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Abstract. We introduce a method that allows the evaluation of general expressions for the spectral func-
tions of the one-dimensional Hubbard model for all values of the on-site electronic repulsion U . The spectral
weights are expressed in terms of pseudofermion operators such that the spectral functions can be writ-
ten as a convolution of pseudofermion dynamical correlation functions. Our results are valid for all finite
energy and momentum values and are used elsewhere in the study of the unusual finite-energy properties
of quasi-one-dimensional compounds and the new quantum systems of ultra-cold fermionic atoms on an
optical lattice.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions

1 Introduction

The main goal of this paper is to provide a general
method for the evaluation of matrix elements of one-,
two-electron, or N -electron operators such that N is fi-
nite, between the ground state and excited energy eigen-
states of the one-dimensional (1D) Hubbard model. Our
results correspond to an important part of the derivation
of the one-electron and two-electron spectral-weight distri-
butions used in references [1,2] in the study of the phase
diagram and unusual one-electron spectral properties of
quasi-1D compounds. Indeed, the matrix-element and gen-
eral spectral-function expressions derived here are used
in reference [3] in the evaluation of closed-form expres-
sions for the finite-energy one-electron and two-electron
spectral-weight distributions of the model metallic phase.
The studies of reference [4] confirm that such expressions
lead to the known correct results in the limit of low en-
ergy. The 1D Hubbard model is one of the few realistic
models for which one can exactly calculate all the energy
eigenstates and their energies [5,6]. In addition to the ap-
plications to the study of the unusual properties of the
quasi-1D compounds presented in references [1,2], our re-
sults are also of interest for the understanding of the spec-
tral properties of the new quantum systems described by
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ultra-cold fermionic atoms in optical lattices with on-site
repulsion [7].

The electron–rotated-electron unitary transforma-
tion [8] introduced in reference [9] for all values of the
on-site repulsion U and the pseudofermion scattering the-
ory considered in reference [10] play a central role in the
construction of the pseudofermion dynamical theory intro-
duced here. The studies of reference [11] reveal that there
is no inconsistency between such a scattering theory and
that corresponding to the conventional spinon-holon rep-
resentation of reference [12]. For finite values of U very
little is known about the finite-energy spectral properties
of the model. This is in contrast to simpler models [13].
Unfortunately, combination of the model Bethe-ansatz so-
lution [5,6] with bosonization, conformal-field theory, or
g-ology and Renormalization Group [14,15] only allows
the derivation of low-energy correlation-function expres-
sions. In the limit of infinite U the spectral functions can
be evaluated by the method presented in reference [16]
and there are recent numerical results for finite values of
U [17], but it is difficult to extract from them information
about the microscopic processes that control the unusual
spectral properties of the model.

The paper is organized as follows: In Section 2 we
introduce the model and the spectral-function problem
and summarize the pseudofermion operational description
used in our study. In Section 3 we write the general spec-
tral functions in terms of rotated-electron operators. The
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description of the rotated-electron elementary processes
in terms of pseudofermion operators is the problem ad-
dressed in Section 4. In Section 5 we express the spectral
functions as a convolution of pseudofermion spectral func-
tions and study the pseudofermion determinants involved
in the expressions of these functions. Finally, the conclud-
ing remarks are presented in Section 6.

2 The model, the spectral functions,
and the pseudofermion description

In a chemical potential µ and magnetic field H the 1D
Hubbard Hamiltonian can be written as,

Ĥ = ĤSO(4) +
∑

α=c, s

µα Ŝα
z ;

ĤSO(4) = −t

Na∑

j=1

∑

σ=↑,↓

∑

δ=−1,+1

c†j, σ cj+δ, σ

+U

Na∑

j=1

[n̂j, ↑ − 1/2][ n̂j, ↓ − 1/2]. (1)

Here the operators c†j, σ and cj, σ are the spin-projection
σ electronic creation and annihilation operators at site
j and n̂j, σ = c†j, σ cj, σ where j = 1, 2, ..., Na. The num-
ber of lattice sites Na is even and very large. We con-
sider periodic boundary conditions. In the first expression
of equation (1), µc = 2µ, µs = 2µ0H , µ0 is the Bohr
magneton, and the diagonal generators of the η-spin and
spin SU(2) algebras [18,19] Ŝc

z and Ŝs
z , respectively, are

given in equation (2) of reference [9]. The Hamiltonian
ĤSO(4) of equation (1) commutes with the six genera-
tors of these two algebras, their off-diagonal generators
being given in equations (7) and (8), respectively, of refer-
ence [9]. The electron number operator reads N̂ =

∑
σ N̂σ,

where N̂σ =
∑Na

j=1 n̂j, σ. For simplicity, we use units
such that the Planck constant and electronic lattice con-
stant are one. The model (1) describes N↑ spin-up elec-
trons and N↓ spin-down electrons in a chain of Na sites,
whose length in the units used here reads L = Na. We
introduce the Fermi momenta which, in the thermody-
namic limit L → ∞, are given by ±kFσ = ±πnσ and
±kF = ±[kF↑ + kF↓]/2 = ±πn/2, where nσ = Nσ/L
and n = N/L. The electronic density can be written as
n = n↑ +n↓ and the spin density is given by m = n↑−n↓.
We denote the η-spin value η and projection ηz (and spin
value S and projection Sz) of an energy eigenstate by Sc

and Sz
c (and Ss and Sz

s ), respectively. The momentum
operator reads,

P̂ =
∑

σ=↑, ↓

∑

k

N̂σ(k) k =
L

2π

∑

σ=↑, ↓

∫ +π

−π

dk N̂σ(k) k, (2)

and commutes with the Hamiltonians given in equa-
tion (1). The spin-projection σ momentum distribution
operator appearing in equation (2) is given by N̂σ(k) =

c†k, σ ck, σ. Here c†k, σ and ck, σ are the spin-projection σ
electron creation and annihilation operators of momen-
tum k. These operators are related to the above local op-
erators as follows,

c†k, σ =
1√
Na

Na∑

j=1

e+ikja c†j, σ;

ck, σ =
1√
Na

Na∑

j=1

e−ikja cj, σ. (3)

The Bethe-ansatz solvability of the 1D Hubbard model
is restricted to the Hilbert subspace spanned by regular
states, i.e. the lowest-weight states (LWSs) of the η-spin
and spin algebras such that Sα = −Sα

z , where α = c, s [9].
For simplicity, in this paper we restrict our considerations
to values of the electronic density n and spin density m
such that 0 ≤ n ≤ 1 and 0 ≤ m ≤ n, respectively. Often
our expressions are different for the n = 1 Mott-Hubbard
insulator phase and 0 < n < 1 metallic phase (and for m =
0 zero spin density and 0 < m < n finite spin densities).

The main aim of this paper is the evaluation of expres-
sions for finite-ω N -electron spectral functions Bl

N (k, ω),
such that l = ±1, of the general form,

Bl
N (k, ω) =

∑

f

|〈f | Ôl
N (k)|GS〉|2 δ

(
ω − l[Ef − EGS ]

)
;

lω > 0; l = ±1, (4)

where the operators in the matrix elements are such that,

Ô+1
N (k) ≡ Ô†

N (k); Ô−1
N (k) ≡ ÔN (k). (5)

Here the f summation runs over the excited energy eigen-
states, the energies Ef correspond to these states, EGS

is the ground-state energy, and we use a momentum ex-
tended scheme such that k ∈ (−∞, +∞). The opera-
tors Ô†

N (k) and ÔN (k) carry momentum k and are de-
noted in equation (5) by Ôl

N (k) where l = +1 and
l = −1, respectively. They are related to the local op-
erators Ô†

N , j ≡ Ô+1
N , j and ÔN , j ≡ Ô−1

N , j , respectively, by
a Fourier transform.

The local operators Ôl
N , j can be written as a prod-

uct of
N =

∑

lc, ls=±1

N l
lc, ls ; l = ±1, (6)

local electronic creation and annihilation operators. Here
N l

lc, ls
is the number of local electronic creation and an-

nihilation operators of the operator Ôl
N , j for lc = −1

and lc = +1, respectively, and with spin down and spin
up for ls = −1 and ls = +1, respectively. It is as-
sumed that the ratio N/Na vanishes in the thermody-
namic limit. Note that, by construction, N+1

lc, ls
and N−1

lc, ls

are such that N+1
lc, ls

= N−1
−lc, ls

, N+1
−1, ls

≥ N+1
+1, ls

, and
N−1

−1, ls
≤ N−1

+1, ls
. For N > 1 the operator Ôl

N , j has
a well defined local structure involving the N−1, ls elec-
tronic creation operators of spin projection ls/2, and
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N l
+1, ls

electronic annihilation operators of spin projec-
tion ls/2 located in neighboring lattice sites. The more
usual cases for the description of experimental studies cor-
respond to N = 1 and N = 2. Examples of N -electron
operators ÔN (k) ≡ Ô−1

N (k) are the one-electron opera-
tor Ô1(k) = ck, σ (measured in the angle-resolved photo-
electron spectroscopy), the spin-projection σ density op-
erator Ôσsd

2 (k) = 1√
Na

∑
k′ c†k+k′, σck′, σ, the transverse

spin-density operator Ôsdw
2 (k) = 1√

Na

∑
k′ c†k+k′, ↑ck′, ↓,

the on-site s-wave singlet superconductivity opera-
tor Ôoss

2 (k) = 1√
Na

∑
k′ ck−k′, ↑ck′, ↓, and the spin-

projection σ triplet superconductivity operator Oσts
2 (k) =

1√
Na

∑
k′ cos(k′) ck−k′, σck′, σ. The corresponding local op-

erators Ô−1
N , j ≡ ÔN , j are Ô1, j = cj, σ, Ôσsd

2, j = c†j, σcj, σ,
Ôsdw

2, j = c†j, ↑cj, ↓, Ôoss
2, j = cj, ↑cj, ↓, and Ôσts

2, j = cj, σcj+1, σ,
respectively. The charge density operator (measured in
density-density electron energy loss spectroscopy and in-
elastic X-ray scattering) is written in terms of the above
spin-up and spin-down density operators. The operators
Ôl

N (k) of physical interest, correspond in general to oper-
ators Ôl

N , j whose N elementary electronic operators cre-
ate or annihilate electrons in a compact domain of lat-
tice sites. For instance, if Ô+1

2, j = c†j, ↓ c†j+i, ↑ and thus
Ô−1

2, j = cj+i, ↑ cj, ↓, the interesting cases correspond to
i = 0 (on-site s-wave singlet superconductivity) and i = 1
(extended s-wave singlet superconductivity).

The k dependence of the spectral functions (4) can be
transferred from the N -electron operators Ôl

N (k) to the
excited energy eigenstates as follows,

Bl
N (k, ω) =

∑

f

Na|〈f | Ôl
N , 0|GS〉|2 δ

(
ω − l[Ef

− EGS ]
)

δk, l[kf−kGS ];

lω > 0; l = ±1. (7)

Here, Ôl
N , 0 is the j = 0 local operator Ôl

N , j considered
above, kf is the momentum of the excited energy eigen-
states, and kGS denotes the ground-state momentum. In
this expression, we have chosen j = 0 for the local opera-
tor Ôl

N , j . Due to translational invariance, the value of the
functions (7) is independent of this special choice.

Let us summarize the basic information about the
holon, spinon, pseudoparticle, and pseudofermion de-
scriptions needed for our studies. (For further informa-
tion, see Refs. [3,4,9,20,21].) These studies involve the
electron–rotated-electron unitary transformation, such
that rotated-electron double occupancy is a good quan-
tum number for all U/t values [9]. As the Fermi-liquid
quasiparticles, the rotated electrons have the same charge
and spin as the electrons, but refer to all energies and re-
organize in terms of [Na −Nc] η-spin 1/2 holons, Nc spin
1/2 spinons, and Nc spinless and η-spinless c pseudopar-
ticles, where Nc is the number of rotated-electron singly
occupied sites [9]. We use the notation ±1/2 holons and

±1/2 spinons, which refers to the η-spin and spin projec-
tions, respectively. The ±1/2 holons of charge ±2e cor-
respond to rotated-electron unoccupied (+) and doubly-
occupied (−) sites. The complex behavior occurs for the
spin-projection σ-rotated electrons occupying singly occu-
pied sites: their spin degrees of freedom originate charge-
less spin-projection σ spinons, whereas their charge part
gives rise to η-spinless and spinless c pseudoparticles of
charge −e.

Based on symmetry considerations, we can classify
the ±1/2 holons and ±1/2 spinons into two classes:
those which remain invariant under the electron–rotated-
electron unitary transformation, and those which do not.
The former are called independent ±1/2 holons and in-
dependent ±1/2 spinons. For instance, the ±1/2 Yang
holons and ±1/2 HL spinons [3,9,20,21] with numbers
reading Lc,±1/2 = [Sc ∓ Sz

c ] and Ls,±1/2 = [Ss ∓ Sz
s ],

respectively, belong to the former group of holons and
spinons. The latter are part of η-spin-zero 2ν-holon com-
posite cν pseudoparticles and spin-zero 2ν-spinon com-
posite sν pseudoparticles, respectively, where ν = 1, 2, ...
is the number of +1/2 and −1/2 holon or +1/2 and
−1/2 spinon pairs. Thus, the total number of ±1/2 holons
(α = c) and ±1/2 spinons (α = s) reads Mα,±1/2 =
Lα,±1/2 +

∑∞
ν=1 ν Nαν , where Nαν denotes the number

of composite αν pseudoparticles. The total number of
holons (α = c) and spinons (α = s) is then given by
Mα = Lα + 2

∑∞
ν=1 ν Nαν where Lα = 2Sα denotes the

total number of Yang holons (α = c) and HL spinons
(α = s). These numbers are such that Mc = [Na − Nc]
and Ms = Nc. The pseudoparticles can be defined in
terms of bare-momentum or spatial coordinates [9]. In ad-
dition to the Yang holons and HL spinons, also the holons
and spinons associated with αν �= c0, s1 pseudoparticles
of limiting bare-momentum values ±qαν are independent
holons and spinons. (qαν is given in Eq. (B.14) of Ref. [9].)
Indeed, the invariance under the electron–rotated-electron
unitary transformation of such cν pseudoparticles (and sν
pseudoparticles) implies that they separate into 2ν inde-
pendent holons (and 2ν independent spinons) and a cν
(and sν) FP current scattering center [10]. (These cen-
ters are defined in the second paper of Ref. [10].) The
emergence of the exotic quantum phases of matter con-
sidered in our study involves a second unitary transfor-
mation, which maps the c pseudoparticles (and composite
αν pseudoparticles) onto c pseudofermions (and composite
αν pseudofermions) [3]. Such a transformation introduces
shifts of order 1/L in the pseudoparticle discrete momen-
tum values and leaves all other pseudoparticle properties
invariant. Here we use the designation c0 pseudoparticle
and pseudofermion for the c pseudoparticle and pseud-
ofermion, respectively. Thus, the cν and sν branches are
such that ν = 0, 1, 2, ... and ν = 1, 2, ..., respectively.

The local αν pseudofermion creation (and annihila-
tion) operator f †

xj , αν (and fxj, αν) creates (and annihi-
lates) a αν pseudofermion at the effective αν lattice site
of spatial coordinate xj = j a0

αν . Here j = 1, 2, ..., N∗
αν and

a0
αν = L/N∗

αν = Na/N∗
αν is the effective αν lattice con-

stant introduced in reference [20] in units of the electronic
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lattice constant. The general expression of the number of
effective αν lattice sites N∗

αν is given in equation (B6) of
reference [9], where the number of αν pseudofermion holes
Nh

αν is provided in equation (B.11) of the same reference.
(The number of pseudofermion and pseudofermion holes
equals that of the corresponding pseudoparticle and pseu-
doparticle holes [3,20].) The operator f †

xj, αν (and fxj, αν)
is related to the operator f †

q̄j , αν (and fq̄j , αν), which refers
to αν pseudofermions of canonical-momentum q̄j , by a
Fourier transform. The discrete canonical-momentum val-
ues of the αν pseudofermions have a functional character
and read [3,10],

q̄j = qj + QΦ
αν(qj)/L = [2π/L]Iαν

j + QΦ
αν(qj)/L;

j = 1, 2, ..., N∗
αν , (8)

where qj = [2πIαν
j ]/L [9] is the bare-momentum carried by

the αν pseudoparticles. Here Iαν
j are the actual quantum

numbers provided by the Bethe-ansatz solution [9]. Al-
though the αν pseudoparticles carry bare-momentum qj ,
one can also label the corresponding αν pseudofermions
by such a bare-momentum. When one refers to the pseud-
ofermion bare-momentum qj , one means that qj is the
bare-momentum value that corresponds to the canonical
momentum q̄j = qj +QΦ

αν(qj)/L. Here and in equation (8)
QΦ

αν(qj)/2 is a αν pseudofermion overall scattering phase
shift given by [10],

QΦ
αν(qj)/2 = π

∑

α′ν′

N∗
α′ν′∑

j′=1

Φαν, α′ν′(qj , qj′ )∆Nα′ν′(qj′ );

j = 1, 2, ..., N∗
αν, (9)

where ∆Nαν(qj) = ∆Nαν(q̄j) is the distribution func-
tion deviation ∆Nαν(qj) = Nαν(qj) − N0

αν(qj). The
canonical-momentum distribution function Nαν(q̄j) (and
bare-momentum distribution function Nαν(qj)) is given
by Nαν(q̄j) = 1 and Nαν(q̄j) = 0 (and Nαν(qj) =
1 and Nαν(qj) = 0) for pseudofermions and pseud-
ofermion holes (and pseudoparticles and pseudoparticle
holes), respectively [3]. The ground-state densely-packed
bare-momentum distribution function N0

αν(qj) is defined
in equations (C.1)–(C.3) of reference [9]. The αν �= c0, s1
pseudofermion limiting canonical-momentum values play
an important role in the theory and read,

q0
αν = qαν + QΦ

αν(qαν)/L; αν �= c0, s1, (10)

where q0
αν is the ground-state limiting bare-momentum

value given in equations (C.13) and (C.14) of refer-
ence [9] and qαν the excited-energy-eigenstate limiting
bare-momentum value provided in equation (B.14) of the
same reference. In contrast to the αν pseudoparticles,
the αν pseudofermions have no residual-interaction en-
ergy terms [3]. Instead, under the ground-state–excited-
energy-eigenstate transitions the αν pseudofermions and
αν pseudofermion holes undergo elementary scattering
events with the α′ν′ pseudofermions and α′ν′ pseud-
ofermion holes created in these transitions [10]. This

leads to the elementary two-pseudofermion phase shifts
π Φαν, α′ν′(qj , q

′
j) on the right-hand side of the overall

scattering phase shift (9), which are defined by a set of in-
tegral equations [3,10,20]. The overall αν pseudofermion
or hole phase shift,

Qαν(qj)/2 = Q0
αν/2 + QΦ

αν(qj)/2, (11)

plays an important role in the pseudofermion the-
ory [3,10]. Here Q0

αν/2 can have the values Q0
αν/2 =

0, ±π/2 [3,10].
The pseudofermion description refers to a Hilbert

subspace called pseudofermion subspace (PS) where the
N -electron excitations are contained [3,10]. The PS is
spanned by the initial ground state and the excited en-
ergy eigenstates generated from it by the following types
of processes (A)–(C), which are defined in more detail in
references [3,20]: (A) finite-energy and finite-momentum
elementary c0 and s1 pseudofermion processes plus cre-
ation of αν �= c0, s1 pseudofermions with bare-momentum
values q �= ±qαν ; (B) zero-energy and finite-momentum
processes that change the number of c0 and s1 pseud-
ofermions at their Fermi points, which for the ground state
and L → ∞ read,

q0
Fc0 = 2kF ; q0

Fs1 = kF↓, (12)

plus creation of independent −1/2 holons and/or −1/2
spinons; and (C) low-energy and small-momentum ele-
mentary c0 and s1 pseudofermion particle-hole processes
in the vicinity of the Fermi points. The PS contains
subspaces of several CPHS ensemble subspaces. (Here
CPHS stands for c0 pseudofermion, holon, and spinon.) A
CPHS ensemble subspace is spanned by all energy eigen-
states with fixed values for the −1/2 Yang holon num-
ber Lc,−1/2, −1/2 HL spinon number Ls,−1/2, c0 pseud-
ofermion number Nc0, and for the sets of composite αν
pseudofermion numbers {Ncν} and {Nsν} corresponding
to the ν = 1, 2, ... branches.

The pseudofermion bare-momentum dependent energy
dispersions εc0(q), εs1(q), εcν(q) = 2νµ + ε0cν(q) for ν > 0,
and εsν(q) = 2νµ0H + ε0sν(q) for ν > 1, where µ = µ(n)
and H = H(m) correspond to the density and magne-
tization curves, respectively, are defined and studied in
references [3,9,21]. Such energy dispersions play a crucial
role in the expressions of the N -electron spectral func-
tions. For m = 0, the energy 2µ is an increasing function
of U and a decreasing function of the density n with the
following limiting values,

2µ = 4t cos(πna/2), U/t → 0;
U + 4t cos(πna), U/t → ∞;
U + 4t, n → 0;
EMH , n → 1, (13)

where EMH is the half-filling Mott-Hubbard gap [5].
The evaluation of matrix elements between energy

eigenstates considered in Section 5 involves pseudofermion
operators f †

q̄, αν and fq̄′, αν such that the canonical mo-
mentum values q̄ and q̄′ = q′ correspond to an excited-
energy-eigenstate and initial ground-state CPHS ensemble
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subspaces, respectively. In that case the unusual pseud-
ofermion anticommutation relations read [3,10],

{f †
q̄, αν , fq′, α′ν′} = δαν, α′ν′

1
N∗

αν

e−i(q̄−q′)/2

× eiQαν(q)/2
sin

(
Qαν(q)/2

)

sin([q̄ − q′]/2)
, (14)

and {f †
q̄, αν , f †

q′, α′ν′} = {fq̄, αν , fq′, α′ν′} = 0.

3 Spectral functions in terms
of rotated-electron operators

Here we express the general N -electron spectral func-
tions (7) in terms of rotated-electron creation and annihi-
lation operators and evaluate the spectral-weight contri-
butions from the Yang holons and HL spinons. Our first
goal is identifying the set of CPHS ensemble subspaces
which are spanned by the excited energy eigenstates gen-
erated by application onto the initial ground state of the
operator Ôl

N , 0 of equation (7). For clarification of this
problem, we must find the set of deviation numbers ∆Nc0,
∆Ns1, {∆Lα,−1/2}, and {∆Nαν} for αν �= c0, s1 that are
generated by application onto the ground state of that
operator. According to the results of references [3,9], for
the ground state Mc,−1/2 = Lα,−1/2 = Nαν = 0 for the
αν �= c0, s1 branches and thus ∆Mc,−1/2 = Mc,−1/2,
∆Lα,−1/2 = Lα,−1/2, and ∆Nαν = Nαν for the latter
branches.

First, we note that the values of the +1/2 holon and
+1/2 spinon number deviations are such that,

∆Mc, +1/2 = −∆Nc0 − Mc,−1/2;
∆Ms, +1/2 = ∆Nc0 − ∆Ms,−1/2, (15)

and thus are dependent on the values of the −1/2 holon
and −1/2 spinon numbers and c0 pseudofermion number
deviations. Also the occupancy configurations of the −1/2
holons and −1/2 spinons determine those of the +1/2
holons and +1/2 spinons. Indeed, the −1/2 holons and
+1/2 holons correspond to the rotated-electron doubly-
occupied sites and unoccupied sites, respectively, of a
charge sequence. The point is that the spatial position
of the unoccupied sites corresponds to the sites left over
by the rotated-electron doubly occupied sites of a charge
sequence. The same applies to the −1/2 spinons and +1/2
spinons, provided that we replace the rotated-electron
doubly-occupied sites and unoccupied sites by sites singly
occupied by spin-down and spin-up rotated electrons, re-
spectively, and the charge sequence by the spin sequence.
Moreover, the values of the corresponding +1/2 Yang
holon and +1/2 HL spinon number deviations read,

∆Lc, +1/2 = −∆Nc0 − 2
∞∑

ν=1

ν Ncν − Lc,−1/2, (16)

and

∆Ls, +1/2 = ∆Nc0−2∆Ns1−2
∞∑

ν=2

ν Nsν −Ls,−1/2, (17)

respectively, and thus are not independent. One does not
need to provide these values in order to specify a CPHS
ensemble subspace. Therefore, often we do not consider
in the expressions below the values of the holon numbers
Mc,+1/2 and Lc, +1/2 and of the spinon numbers Ms, +1/2

and Ls, +1/2.
The values of the deviations ∆N↑ and ∆N↓ specific

to a given N -electron operator, lead to sum rules for the
values of the number deviations of pseudofermions, −1/2
Yang holons, and −1/2 HL spinons as follows,

∆N = ∆Nc0 + 2Lc,−1/2 + 2
∞∑

ν=1

ν Ncν, (18)

and

∆(N↓ − N↑) = 2∆Ns1 − ∆Nc0 + 2Ls,−1/2 + 2
∞∑

ν=2

ν Nsν .

(19)
Only transitions to excited energy eigenstates associated
with deviations obeying the sum rules (18) and (19) are
permitted. The same deviations are associated with sum
rules obeyed by the numbers N l

lc, ls
of equation (6) for the

operator Ôl
N , j appearing in the general spectral-function

expressions of equation (7). Such sum rules read,

∆N =
∑

lc, ls=±1

(−lc)N l
lc, ls ;

∆(N↓ − N↑) =
∑

lc, ls=±1

(lc ls)N l
lc, ls . (20)

Furthermore, it is straightforward to show that the fol-
lowing selection rule is valid for initial ground states cor-
responding to the density values considered in this paper:
the values of the numbers of −1/2 Yang holons and −1/2
HL spinons generated by application onto the ground state
of the N -electron operator Ôl

N , j , equation (7), are re-
stricted to the following ranges,

Lc,−1/2 = 0, 1, 2, ...,
∑

ls=±1

N l
−1, ls ;

Ls,−1/2 = 0, 1, 2, ...,
∑

lc, ls=±1

δlc, ls N l
lc, ls ;

l = ±1, (21)

respectively. Here the numbers N l
lc, ls

are those of equa-
tion (6) specific to that operator.

Further selection rules in terms of the rotated-electron
expressions for the operator Ôl

N , 0 of the general spectral-
function (7) are given in the ensuing section.

Let us label the excited energy eigenstates of the
state summations of the general N -electron spectral func-
tion (7) according to their CPHS ensemble subspace.
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(We recall that all excited energy eigenstates belonging to
a given CPHS ensemble subspace have the same values for
the set of deviation numbers ∆Nc0 and ∆Ns1 and numbers
{Lα,−1/2} for α = c, s, and {Nαν} for the αν �= c0, s1
branches.) This procedure leads to the following expres-
sion for the spectral function (7),

Bl
N (k, ω) =

∑

{∆Nαν}, {Lα, −1/2}

∑

f

Na|〈f ; C| Ôl
N , 0|GS〉|2

× δ
(
ω − l∆Ecphs

)
δk, l∆kcphs

; lω > 0, (22)

where l = ±1 and the summation
∑

{∆Nαν}, {Lα, −1/2} runs
over the CPHS ensemble subspaces whose deviation val-
ues obey the sum rules (18) and (19) and selection rules
(21). Moreover, the summation

∑
f runs over the excited

energy eigenstates |f ; C〉 of a given CPHS ensemble sub-
space, ∆Ecphs is the excitation energy, and ∆kcphs the cor-
responding excitation momentum. A general energy eigen-
state |f〉 with finite values for the numbers Lc,−1/2 and/or
Ls,−1/2, can be expressed as follows,

|f〉 =
∏

α=c, s

(Ŝ†
α)Lα, −1/2

√Cα

|f.L〉. (23)

Here,

Cα = δLα, −1/2, 0 +
Lα, −1/2∏

l=1

l [ Lα + 1 − l ];

Lα,−1/2 ≤ Lα = 2Sα, (24)

and the η-spin flip Yang holon (α = c) and spin flip HL
spinon (α = s) operators Ŝ†

α are the off-diagonal genera-
tors of the corresponding SU(2) algebras given in equa-
tions (7) and (8), respectively, of reference [9]. These oper-
ators remain invariant under the electron–rotated-electron
unitary transformation and thus have the same expres-
sion in terms of electronic and rotated-electron creation
and annihilation operators. Moreover, in equation (23)
|f.L〉 is the LWS that corresponds to the state |f〉. For a
state |f ; C〉 belonging to a given CPHS ensemble subspace
the corresponding LWS is denoted by |f.L ; C〉. However,
note that a non-LWS |f ; C〉 and the corresponding LWS
|f.L ; C〉 belong to different CPHSs, once they correspond
to different values of the numbers Lc,−1/2 and/or Ls,−1/2.

It is useful to reexpress the spectral-function expres-
sion (22) in terms of matrix elements between regular
states only. The ground state is a LWS of both the η-
spin and spin SU(2) algebras and thus has the following
property,

Ŝα |GS〉 = 0; α = c, s. (25)

Let us introduce the operators Θ̂l
N , j and Θ̂l

N , k such that,

〈f.L; C|
∏

α=c, s

1√Cα

(Ŝα)Lα, −1/2 Ôl
N , j |GS〉 =

[ ∏

α=c, s

1√Cα

]
〈f.L; C|Θ̂l

N , j |GS〉,

〈f.L; C|
∏

α=c, s

1√Cα

(Ŝα)Lα, −1/2 Ôl
N (k)|GS〉 =

[ ∏

α=c, s

1√Cα

]
〈f.L; C|Θ̂l

N , k|GS〉; l = ±1. (26)

By suitable use of equation (25), it is straightforward to
show that the operators Θ̂l

N , j and Θ̂l
N , k are given by the

following commutators,

Θ̂l
N , j =

[ ∏

α=c, s

(Ŝα)Lα, −1/2 , Ôl
N , j

]
,

Θ̂l
N , k =

[ ∏

α=c, s

(Ŝα)Lα, −1/2 , Ôl
N , k

]
,

Lc,−1/2 and/or Ls,−1/2 > 0; l = ±1, (27)

or by,

Θ̂l
N , j = Ôl

N , j ; Θ̂l
N , k = Ôl

N , k,

Lc,−1/2 = Ls,−1/2 = 0; l = ±1. (28)

Thus,

Bl
N (k, ω) =

∑

{∆Nαν}, {Lα, −1/2}

( ∏

α=c, s

1
Cα

)

×
∑

f

Na|〈f.L; C| Θ̂l
N , 0|GS〉|2

× δ
(
ω − ∆Ecphs

)
δk, ∆kcphs

; l = ±1. (29)

Note that when the operator Θ̂l
N , 0 is given by equa-

tion (28) one has that |f.L; C〉 = |f ; C〉 in equation (29).
If the commutator [

∏
α=c, s(Ŝα)Lα, −1/2 , Ôl

N , j ] of equa-
tion (27) vanishes, then the excitation generated by ap-
plication of the corresponding operator Ôl

N , j onto the
ground state has no overlap with the excited energy eigen-
state (23).

Similarly to Ôl
N , j , the corresponding operator Θ̂l

N , j
can be written as a N -electron operator. Let the num-
bers N l

lc, ls
of equation (6) refer to the operator Ôl

N , j

of the spectral-function expression of equation (7). Then
we call N̄ l

lc, ls
the corresponding electronic numbers

of the operator Θ̂l
N , j of the spectral-function expres-

sion of equation (29). The values are such that N =∑
lc, ls=±1 N̄ l

lc, ls
=

∑
lc, ls=±1 N l

lc, ls
and,

∑

ls=±1

N̄+1
±1, ls

=
∑

ls=±1

N l
±1, ls ± 2Lc,−1/2;

∑

lc, ls=±1

δlc,±ls N̄ l
lc, ls =

∑

lc, ls=±1

δlc,±ls N l
lc, ls ∓ 2Ls,−1/2;

l = ±1. (30)

These relations provide information about the numbers
of electronic creation and annihilation operators of the
N -electron operator Θ̂l

N , j expression relative to the cor-
responding numbers of the Ôl

N , j expression. While the
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number of electronic creation (and annihilation) opera-
tors decreases (and increases) by 2Lc,−1/2, the number
of electronic spin-down creation and spin-up annihilation
(and spin-down annihilation and spin-up creation) opera-
tors decreases (and increases) by 2Ls,−1/2.

We note that the numbers N l
lc, ls

of equation (6) for
the operator Ôl

N , j on the right-hand-side of equation (27)
obey the sum rules (20). Thus, following the relations of
equation (30), the numbers N̄ l

lc, ls
of the corresponding

operator Θ̂l
N , j are such that,

∆Lc = 2∆Sc = −∆N + 2Lc,−1/2 =
∑

lc, ls=±1

(lc) N̄ l
lc, ls ;

∆Ls = 2∆Ss = ∆(N↑ − N↓) + 2Ls,−1/2

= −
∑

lc, ls=±1

(lc ls) N̄ l
lc, ls . (31)

The first relation of equation (20) just states that the
difference in the number of electronic creation and an-
nihilation operators of the original N -electron operator
Ôl

N , j equals the value ∆N of the electron number devi-
ation generated by such an operator. Similarly, the first
relation of equation (31) states that the difference in the
number of rotated-electron annihilation and creation op-
erators of Θ̂l

N , j equals twice the value ∆Sc = ∆η of the η-
spin value deviation generated by that N -rotated-electron
operator. Similar considerations apply to the second rela-
tions of equations (20) and (31).

We emphasize that all matrix elements of the general
spectral-function expression (29) refer to regular energy
eigenstates. Indeed, by changing from the spectral func-
tion representation (7) to (29) we have eliminated the ex-
plicit presence of −1/2 Yang holons and −1/2 HL spinons.
This was done by evaluation of the contribution of these
quantum objects to the N -electron spectral weight. Such a
procedure corresponds to the computation of the commu-
tator [

∏
α=c, s(Ŝα)Lα, −1/2 , Ôl

N , j ] on the right-hand side of
equation (27).

Our next step is the expression of the operator Θ̂l
N , j

for the general spectral-function expression (29) in terms
of rotated-electron creation and annihilation operators.
Here we use the results of references [3,9,20] concerning
the expression of the rotated electrons in terms of ±1/2
holons, ±1/2 spinons, and c0 pseudofermions. It is this
direct relation that makes convenient the rotated-electron
expression for the N -electron spectral functions. The ex-
pression of the local N -electron operator Θ̂l

N , j in terms
of rotated-electron creation and annihilation operators is
obtained by use of the following relation,

Θ̂l
N , j = eŜ Θ̃l

N0, j e−Ŝ = Θ̃l
N0, j +

∞∑

i=1

√
cl
i Θ̃l

Ni, j ;

j = 1, 2, ..., Na; l = ±1. (32)

Here Ŝ is the operator defined by equations (21)–(23) of
reference [9] and Θ̃l

N0, j has the same expression in terms

of rotated-electron creation and annihilation operators as
Θ̂l

N , j in terms of electronic creation and annihilation op-
erators and thus N0 = N . It is given by,

Θ̃l
N0, j = V̂ †(U/t) Θ̂l

N , j V̂ (U/t) = e−Ŝ Θ̂l
N , j eŜ ;

j = 1, 2, ..., Na; l = ±1.

The operators Θ̃l
Ni, j on the right-hand side of equa-

tion (32) such that i = 1, 2, ... can be written as a product
of Ni rotated-electron creation and annihilation operators
and the value of the coefficient cl

i is a function of n, m,
and U/t such that cl

i → 0 as U/t → ∞. For instance, for
i = 1 and i = 2 we find,
√

cl
1 Θ̃l

N1, j = [Ŝ, Θ̃l
N0, j ]; j = 1, 2, ..., Na; l = ±1,

(33)
and

√
cl
2 Θ̃l

N2, j =
1
2

[Ŝ, [Ŝ, Θ̃l
N0, j ] ]; j = 1, 2, ..., Na;

l = ±1, (34)

respectively, and the i > 2 operator terms are easily gener-
ated and involve similar commutators. For simplicity, here
we omit the longer expressions of the latter terms.

It is useful for the study of the spectral-function ex-
pressions to divide each CPHS ensemble subspace in a set
of well-defined subspaces. The number deviation ∆Nαν for
the αν = c0, s1 branches and the number Nαν = ∆Nαν

for the αν �= c0, s1 branches can be expressed in terms of
other related numbers as follows,

∆Nαν = ∆NF
αν + ∆NNF

αν ;

∆NF
αν = ∆NF

αν, +1 + ∆NF
αν, −1;

2∆JF
αν = ∆NF

αν, +1 − ∆NF
αν, −1;

∆NF
αν, ι = ∆N0,F

αν, ι + ιQ0
αν/2π;

∆N0,F
αν = ∆N0,F

αν, +1 + ∆N0,F
αν, −1 = ∆NF

αν ;

αν = c0, s1 ι = ±1;

Nαν = NF
αν + NNF

αν ;

NF
αν = NF

αν, +1 + NF
αν, −1;

2JF
αν = NF

αν, +1 − NF
αν, −1;

αν �= c0, s1. (35)

Here ∆NF
αν, ±1 is the deviation in the number of αν =

c0, s1 pseudofermions at the right (+1) and left right
(−1) Fermi points, ∆NF

αν and ∆JF
αν are the correspond-

ing number and current number deviations, respectively,
and ∆NNF

αν gives the deviation in the number of αν =
c0, s1 pseudofermions away from these points. Moreover,
∆N0,F

αν,±1 is the actual number of αν pseudofermions
created or annihilated at the right (+1) and left right
(−1) Fermi points and Q0

αν/2 is the scatter-less phase
shift on the right-hand side of equation (11). For the
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αν �= c0, s1 branches, NF
αν, ι is the number of αν pseud-

ofermions with limiting bare-momentum value q = ι q0
αν

such that ι = ±1, JF
αν is the corresponding current num-

ber, and NNF
αν is the number of αν pseudofermions whose

bare-momentum values obey the inequality |q| < q0
αν .

Let us also consider the number NphNF
αν of finite-

momentum and finite-energy αν pseudofermion particle-
hole processes (A), which refers to the αν = c0, s1
branches only [3]. NphNF

αν is zero or a positive integer
such that NphNF

αν = [Nαν − |∆NNF
αν |]/2. Here Nαν gives

the number of αν pseudofermion creation and annihilation
operators involved in the expression of the generators of
the elementary processes (A).

The J-CPHS ensemble subspaces are the subspaces of
a CPHS ensemble subspace spanned by the excited en-
ergy eigenstates with the same values for the numbers
NphNF

c0 , NphNF
s1 , ∆NF

c0,+1, ∆NF
c0,−1, ∆NF

s1, +1, ∆NF
s1, −1,

and sets of numbers {NF
αν, +1} and {NF

αν,−1} for the
αν �= c0, s1 branches with finite pseudofermion occupancy
in the CPHS ensemble subspace.

Use of equation (32) for j = 0 in the general spectral-
function expression (29) leads to,

Bl
N (k, ω) =
∞∑

i=0

cl
i

∑

{∆Nαν},{Lα, −1/2}

[ ∑

{NphNF
αν },{∆NF

αν,ι},{NF
αν,ι}

Bl,i(k, ω)
]
;

cl
0 = 1, l = ±1, (36)

where the summations
∑

{∆Nαν}, {Lα, −1/2} and∑
{NphNF

αν }, {∆NF
αν, ι}, {NF

αν, ι} run over CPHS ensemble
subspaces and the corresponding J-CPHS ensemble sub-
spaces of each of these spaces, respectively. The function
Bl,i(k, ω) on the right-hand side of equation (36) reads,

Bl,i(k, ω) =
( ∏

α=c, s

1
Cα

) ∑

f

Na|〈f.L; JC| Θ̃l
Ni, 0|GS〉|2

× δ
(
ω − l∆Ej−cphs

)
δk, l∆kj−cphs

;

l = ±1; i = 0, 1, 2, ..., (37)

where the summation
∑

f runs over the excited energy
eigenstates |f.L; JC〉 which span each J-CPHS ensemble
subspace. Thus, there is a function Bl,i(k, ω) for each of
these subspaces. (We recall that |f.L; JC〉 is the LWS of
a state |f ; JC〉 related to it by the general Eq. (23).)

Finally, let us use a notation for the number of spin-
down and spin-up rotated-electron creation and annihi-
lation operators of the operator Θ̃l

Ni, j such that i =
0, 1, 2, ... similar to that associated with the numbers
N̄ l

lc, ls
of equation (30). Thus, we introduce the numbers,

Ni =
∑

lc, ls=±1

N̄ l,i
lc, ls

; l = ±1; i = 0, 1, 2..., (38)

which refer to the operator Θ̃l
Ni, j . Here N̄ l,i

lc, ls
is the num-

ber of rotated-electron creation and annihilation operators

for lc = −1 and lc = +1, respectively, and with spin down
and spin up for ls = −1 and ls = +1, respectively. The
operator Θ̃l

N0, j of equation (32) has the same four rotated-
electron numbers {N̄ 0,l

lc, ls
} = {N̄ l

lc, ls
} as the corresponding

operator Θ̂l
N , j in terms of electrons.

4 Rotated-electron sum rules, selection rules,
and elementary processes in terms
of pseudofermion operators

In this section we provide sum rules and selection rules
which for the PS arise from the direct relation between
rotated electrons and the holons, spinons, and pseud-
ofermions. Furthermore, we use such a relation to express
the elementary rotated-electron processes in terms of the
pseudofermion creation and annihilation operators.

An important symmetry is that all six generators of
the η-spin and spin SU(2) algebras are invariant under
the electron–rotated-electron unitary transformation [9].
Thus, the number of spin-projection σ electrons equals the
number of spin-projection σ rotated electrons. This also
applies to the deviations ∆Sc and ∆Ss in the η-spin and
spin values, respectively, generated by application onto
the ground state of a N -electron operator. This symmetry
implies that all i = 0, 1, 2, ... operators Θ̃l

Ni, j on the right-
hand side of equation (32) generate the same deviations
∆Sc and ∆Ss, as the operator Θ̂l

N , j on the left-hand side
of the same equation. It follows that the values N̄ l,i

lc, ls
for

all these i = 0, 1, 2, ... operators with the same value of
l = ±1 obey the following sum rules,

∆Lc = 2∆Sc = −∆N + 2Lc,−1/2 =
∑

lc, ls=±1

(lc) N̄ l,i
lc, ls

;

∆Ls = 2∆Ss = ∆(N↑ − N↓) + 2Ls,−1/2 =

−
∑

lc, ls=±1

(lc ls) N̄ l,i
lc, ls

; l = ±1; i = 0, 1, 2, ...(39)

These rules provide useful information about the expres-
sion of all i = 1, 2, ... operators Θ̃l

Ni, j . In addition to
the rotated-electron creation and annihilation operators
of Θ̃l

N0, j , such an expression includes pairs of rotated-
electron creation and annihilation operators with the same
spin projection σ. Thus, such additional creation and anni-
hilation operators only generate rotated-electron particle-
hole excitations and do not change the net number of spin-
projection σ rotated electrons created or annihilated by
application of the operators Θ̃l

Ni, j onto the ground state.
The general situation refers to N -electron operators that
are not invariant under the electron - rotated-electron uni-
tary transformation. (The problem is trivial for those that
are invariant, once Θ̃l

Ni, j = 0 for i > 0 in that case.) The
precise form of Θ̃l

Ni, j for i = 1, 2, ... depends on the spe-
cific N -electron operator under consideration. However,
a general property that follows from the relations (39) is
that for increasing values of i = 1, 2, ... the operators Θ̃l

Ni, j
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are constructed by adding to Θ̃l
N0, j an increasing num-

ber of particle-hole elementary spin-projection σ rotated-
electron pairs.

In equation (32) the N -electron operator Θ̂l
N , j is ex-

pressed in terms of rotated-electron creation and anni-
hilation operators. From the direct relation between the
rotated electrons and the holons, spinons, and pseud-
ofermions it is straightforward to find useful selection
rules. Such rules refer to restrictions in the values of the
number of −1/2 holons and thus of 2ν-holon composite cν
pseudofermions generated by application onto the ground
state of each of the i = 0, 1, 2, ... operators Θ̃l

Ni, j of expres-
sion (32). [The expression of these operators determines
the value of the N -electron spectral function of Eq. (36),
as confirmed by the form of the related functions (37).]
For the PS excited energy eigenstates which have finite
overlap with the N -electron excitations, the values of the
−1/2-holon number, Mc,−1/2, and number of finite-energy
and finite-momentum c0 pseudofermion particle-hole pro-
cesses, NphNF

c0 , of the elementary processes (A) [3] are
restricted to the following ranges,

Mc,−1/2 = Lc,−1/2 +
∞∑

ν=1

ν Ncν = 0, 1, ...,
∑

ls=±1

N̄ l,i
−1, ls

;

NphNF
c0 = 0, 1, ..., min

{
∑

ls=±1

N̄ l,i
−1, ls

,
∑

ls=±1

N̄ l,i
+1, ls

}
;

i = 0, 1, 2, ... (40)

Here the numbers N̄ l,i
lc, ls

are those of equation (38) for the
operator Θ̃l

Ni, j . The i = 0 operator Θ̃l
N0, j has the same

expression in terms of rotated-electron creation and anni-
hilation operators as the corresponding operator Θ̂l

N , j of
equation (32) in terms of electronic creation and annihi-
lation operators. Therefore, for i = 0 the selection rules
given in equation (40) read,

Mc,−1/2 = Lc,−1/2 +
∞∑

ν=1

ν Ncν = 0, 1, ...,
∑

ls=±1

N̄ l
−1, ls ;

NphNF
c0 = 0, 1, ..., min

{
∑

ls=±1

N̄ l
−1, ls ,

∑

ls=±1

N̄ l
+1,ls

}
,

(41)

where the numbers N̄ l
−1, ls

= N̄ l,0
−1, ls

are those of equa-
tion (30) specific to the operator Θ̂l

N , j .
The first exact ground-state charge selection rule of

equation (40) concerning the number of −1/2 holons,
Mc,−1/2, is equivalent to the following selection rule in-
volving the number deviation −∆Mc = ∆Ms = ∆Nc0,

∑

lc, ls=±1

(lc) N̄ l,i
lc, ls

≤ ∆Mc ≤ Ni;

− Ni ≤ ∆Nc0 = ∆Ms ≤ −
∑

lc, ls=±1

(lc) N̄ l,i
lc, ls

;

i = 0, 1, 2, ... (42)

Indeed, the combination of the inequalities (42) with
the relations (27)-(29) of reference [9] and that of equa-
tion (39), readily confirms the equivalence of the first selec-
tion rule given in equation (40) and that of equation (42).

Moreover, the −1/2 spinon number deviation
∆Ms,−1/2 is fully determined by the value of the −1/2
holon number of the first selection rule of equation (40)
and reads,

∆Ms,−1/2 = Ls,−1/2 + ∆Ns1 +
∞∑

ν=2

ν Nsν

= ∆N↓ − Mc,−1/2. (43)

Equations (18), (19), (39), and (43) define sum rules
obeyed by the values of the deviations in the quantum-
object numbers and equations (21), (40), and (42) corre-
spond to selection rules for the permitted values of these
deviations. Such sum rules and selection rules define the
set of CPHS ensemble subspaces which contain the excited
energy eigenstates with finite overlap with the N -electron
excitations under consideration.

While the above rules are exact, direct evaluation of
the weights by the method introduced in Section 5 and
further developed in reference [3] reveals that 94% to 98%
of the N -electron weight corresponds to excited energy
eigenstates with numbers in the following range,

Ls,−1/2 +
∞∑

ν=1

(ν − 1)Nsν = 0, 1, 2, ...,
∑

lc, ls=±1

δlc, ls N̄ l,i
lc, ls

;

i = 0, 1, 2, ... (44)

For i = 0 the relation (44) can be written as,

Ls,−1/2 +
∞∑

ν=1

(ν − 1)Nsν = 0, 1, 2, ...,
∑

lc, ls=±1

δlc, ls N̄ l
lc, ls ,

(45)
where the numbers N̄ l

lc, ls
= N̄ l,0

lc, ls
are those of equa-

tion (30) specific for the operator Θ̂l
N , j of equation (32).

Local −1/2 holons (and −1/2 spinons) correspond
to local 2ν-holon composite cν pseudofermions (and 2ν-
spinon composite sν pseudofermions). Local αν pseud-
ofermions are associated with the operators f †

xj, αν and
fxj, αν on the right-hand side of equation (34) of ref-
erence [3]. Let us denote the rotated-electron spin
projections σ =↑, ↓ by σ = −1/2, +1/2, respectively, and
consider the elementary processes of the N -electron exci-
tations in terms of occupancy configurations of local ±1/2
holons, ±1/2 spinons, and c0 pseudofermions:

(i) to create one spin-projection σ = ±1/2 rotated elec-
tron at the unoccupied site j, we need to annihilate a
local +1/2 holon and create a local c0 pseudofermion
and a local ±1/2 spinon at the same site. Annihila-
tion of a spin-projection σ = ±1/2 rotated electron
at a spin-projection σ = ±1/2 rotated-electron singly
occupied site j, involves the opposite processes;
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(ii) to create one spin-projection σ = ±1/2 rotated elec-
tron at a spin-projection σ = ∓1/2 rotated-electron
singly occupied site j, we need to annihilate a local
∓1/2 spinon and a local c0 pseudofermion and to cre-
ate a local −1/2 holon at such a site. Again, to anni-
hilate a spin-projection σ = ±1/2 rotated electron at
a rotated-electron doubly occupied site j, involves the
opposite processes;

(iii) the creation of two rotated electrons of opposite spin
projection onto the unoccupied site j involves the an-
nihilation of a local +1/2 holon and the creation of a
local −1/2 holon at such a site. Annihilation of two
rotated electrons of opposite spin projection onto the
doubly-occupied site j, involves the opposite processes;

(iv) the annihilation of one spin-projection σ = ±1/2
rotated electron and creation of one spin-projection
σ = ∓1/2 rotated electron at the singly-occupied site
j, involves the annihilation of one local ±1/2 spinon
and the creation of one local ∓1/2 spinon.

Other processes can be expressed as suitable combi-
nations of the above elementary processes. The local
rotated-electron operator terms which transfer spectral
weight from the ground state to each of the J-CPHS en-
semble subspaces appearing in the state summation of
the spectral-function expression (36) have a specific and
uniquely defined form in terms of c0 pseudofermion and
composite αν pseudofermion creation and annihilation op-
erators. In order to find the pseudofermion form of these
operator terms it is crucial to take into account the initial
ground-state pseudofermion occupancies, given in equa-
tions (C.24, C.25) of reference [9]. (We recall that the
pseudoparticle-number values of the latter equations equal
those of the corresponding pseudofermion numbers.)

Before illustrating how the elementary processes (i)–
(iv) are generated by the pseudofermion creation and an-
nihilation operators, it is convenient to provide some ba-
sic rules for the use of the latter operators. Since follow-
ing the use of the relations of equation (26) all matrix
elements are between the ground state and regular ex-
cited states, in the processes considered below, the de-
viations in the numbers of Yang holons (α = c) and
HL spinons (α = s) are such that ∆Lα = ∆Lα ,+1/2.
Some of these processes involve creation or annihilation
of +1/2 Yang holons and/or +1/2 HL spinons. However,
we recall that within the pseudofermion representation,
the +1/2 Yang holons and +1/2 HL spinons do not ap-
pear explicitly. Such processes are taken into account by
the deviations in the number of discrete bare-momentum
(and canonical-momentum) values and effective αν lat-
tice sites of the cν �= c0 branches and/or sν branches,
respectively. Given the values of the corresponding pseud-
ofermion number deviations, this is readily confirmed if
one compares the number (B.6) of reference [9] of discrete
bare-momentum values and of effective lattice sites of the
excited energy eigenstate and ground state CPHS ensem-
ble subspaces. Since ∆Lα = ∆Lα ,+1/2, note that follow-
ing equations (B.6) and (B.7) of reference [9], the value of
the number N∗

αν changes when the value of the number
Lc = Lc ,+1/2 of +1/2 Yang holons and/or Ls = Ls ,+1/2

of +1/2 HL spinons also changes. Thus, creation and anni-
hilation of +1/2 Yang holons (and +1/2 HL spinons) are
processes that are taken into account in the definition of
the effective cν �= c0 pseudofermion lattices of the initial
ground state and excited energy eigenstates.

In the following we provide different examples of local
rotated-electron operator expressions in terms of pseud-
ofermion creation and annihilation operators. For simplic-
ity, each of such pseudofermion expressions corresponds
to the term of the local rotated-electron operator which
transfers spectral weight from the initial ground state
onto a single excitation J-CPHS ensemble subspace. Such
a pseudofermion term includes a coefficient factor 1/CJ

whose value is well defined for each subspace. The full lo-
cal rotated-electron operator term which transfers spectral
weight from the ground state to a given J-CPHS ensemble
subspace is the product of that studied here by another
pseudofermion operator term given in the ensuing section.
The latter operator transfers from the ground state to the
J-CPHS ensemble subspace the part of the spectral weight
which corresponds to the processes (B) and (C), whereas
the pseudofermion terms studied here transfer the part of
that weight associated with the processes (A).

A i = 0 local rotated-electron operator Θ̃l
N0, j always

has one or a few dominant CPHS ensemble subspaces
which correspond to the whole spectral weight transferred
from the ground state in well defined limits. For one-
electron problems such that N0 = N = 1 this refers
to the limits where the spectral-weight distribution is δ-
function like, as in equation (77) of reference [3]. For
N0 = N = 2, to the limits where such a distribution
can be expressed as a simple integral whose integrand is
a δ function, as in equation (78) of the same reference.
In the general N0 = N > 2 case, to the limits where
the spectral-weight distribution can be written as an inte-
gral whose integrand is a product of [N − 1] δ functions.
For instance, for N = 1 this occurs for U/t → 0. For
the one-electron problem the amount of spectral weight
transferred from the ground state to the set of J-CPHS
ensemble subspaces contained in the dominant CPHS en-
semble subspaces is weakly dependent on U/t: while for
U/t � 1 it corresponds to the whole spectral weight trans-
ferred from the ground state by the local rotated-electron
operator, for U/t � 1 it corresponds typically to more
than 0.94% of that weight. (Comparison of the amount of
transferred weight for U/t � 1 with that obtained by use
of the methods of Ref. [16] for U/t � 1 confirms such a
weak U/t dependence.) For U/t finite there arise an infi-
nite number of pseudofermion terms, each corresponding
to a J-CPHS ensemble subspace compatible with the local
rotated-electron operator. Another example is the N = 2
charge dynamical structure factor, where there are differ-
ent dominant CPHS ensemble subspaces for U/t → 0 and
U/t → ∞, respectively. In this case the amount of spec-
tral weight transferred from the ground state to the set
of J-CPHS ensemble subspaces contained in the dominant
CPHS ensemble subspaces is a decreasing (and increas-
ing) function of U/t for the U/t → 0 (and U/t → ∞)
dominant subspaces and vanishes as U/t → ∞ (and
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U/t → 0). Again, for intermediate finite values of U/t
there arise an infinite number of pseudofermion terms,
each corresponding to a J-CPHS ensemble subspace com-
patible with the local rotated-electron operator. However,
for all i = 0 local rotated-electron operators Θ̃l

N0, j the
pseudofermion terms associated with the dominant sub-
spaces together with a small number of other terms cor-
respond to more than 99% of the spectral weight. It fol-
lows that in applications of the pseudofermion dynamical
theory introduced here and in reference [3] only a finite
number of pseudofermion terms should be considered.

The αν = c0, s1 pseudofermion number deviations
and αν �= c0, s1 pseudofermion numbers are related to the
rotated-electron number deviations by equations (18) and
(19). Given the values of the αν = c0, s1 pseudofermion
number deviations and αν �= c0, s1 pseudofermion num-
bers of the specific J-CPHS ensemble subspace under con-
sideration, the expression of the local rotated-electron op-
erator in terms of pseudofermion creation and annihilation
operators is always uniquely defined. Let us start by pro-
viding some of the simplest pseudofermion operator terms
of local rotated-electron operators. For local one- and two-
rotated-electron operators these operator terms involve
in general αν pseudofermion creation and/or annihilation
operators belonging to branches such that ν < 2. The case
of other terms associated with excitation J-CPHS ensem-
ble subspaces generated from the ground state by pro-
cesses involving creation of composite αν pseudofermions
for ν > 1 is discussed later.

In the following expressions the αν effective lattice in-
teger site index j′ is such that j′ = 1, 2, ..., N∗

αν. An im-
portant property is that an operator whose expression in
terms of rotated-electron operators is local at xj = ja = j
can be written as a product of local αν pseudofermion
operators at xj′ ≈ xj where xj′ = j′a0

αν . Here and in
all expressions given below j′ is defined for the αν �= c0
branches as the closest integer number to jn∗

αν , whereas
j′ = j for αν = c0. We note that for the former branches
the site j′ occupied by one αν pseudofermion corresponds
to 2ν sites of the rotated-electron lattice. Thus, |xj′ − xj |
is always smaller than the very small intrinsic uncertainty
which corresponds to the 2ν rotated-electron lattice sites
occupied by the local αν pseudofermion. Moreover, we em-
phasize that the rotated-electron lattice site j associated
with the effective αν �= c0 lattice site j′ ≈ jn∗

αν defined
above always belongs to the domain of 2ν rotated-electron
lattice sites of j′. Here and below we use the equality
j′ = jn∗

αν to denote the integer number j′ defined above.
Thus, the site j′ is such that j′ = j for αν = c0 operators,
j′ = jn↑ for αν = s1 operators, j′ = j[1 − n] for cν �= c0
operators when n < 1, and j′ = j[n↑−n↓] for sν �= s1 op-
erators when m > 0. The following local rotated-electron
operator expressions in terms of pseudofermions, whose
coefficient CJ is different for each operator, refer to the
elementary processes (A) subspace:

(i) One of the simplest processes for creation of one
spin-down rotated electron at the unoccupied site j in-
volves the creation of a local c0 pseudofermion with the
operator f †

xj , c0 and of a local s1 pseudofermion with the

operator f †
xj′ , s1 such that j′ = jn↑,

c̃†j, ↓ (1 − ñj, ↑) =
1

CJ
f †

xj′ , s1 f †
xj , c0;

CJ = ei j∆PJ
GC

GJ
;

GJ =
∏

αν

[
θ(Nαν)(n∗

αν)
Nαν−1

2 + [1 − θ(Nαν)]
]
,

Nαν = |∆NNF
αν | + 2NphNF

αν , αν = c0, s1;

Nαν = NNF
αν , αν �= c0, s1, (46)

and thus c̃j, ↓ (1 − ñj, ↑) = 1
CJ

fxj, c0 fxj′ , s1 refers to anni-
hilation of one spin-down rotated electron at the singly-
occupied site j. In equation (46), ñj, σ = c̃†j, σ c̃j, σ is the
local spin-projection σ rotated-electron density operator.

Note that the only j dependence of the coefficient CJ

whose general expression is provided in equation (46) is
through the phase factor ei j∆PJ , and thus the real and
positive number |CJ | is independent of the spatial coor-
dinate j. In the expression of the U/t independent real
positive number GJ given in that equation, Nαν equals
the number of αν pseudofermion creation and annihilation
operators of the expression of the operator under consid-
eration. For instance, Nc0 = Ns1 = 1 for both the above
operators 1

CJ
f †

xj′ , s1 f †
xj, c0 and 1

CJ
fxj, c0 fxj′ , s1. While the

values of GJ and of the momentum deviation ∆PJ are spe-
cific to each excited J-CPHS ensemble subspace, that of
the real positive constant GC is fixed and well defined for
each excited CPHS ensemble subspace. Application of the
operator 1

CJ
f †

xj′ , s1 f †
xj, c0 of equation (46) onto the initial

ground state leads to an excitation spanned by excited en-
ergy eigenstates belonging to the same J-CPHS ensemble
subspace. The actual value of CJ is thus that correspond-
ing to such a subspace. The same applies to the coeffi-
cients CJ of the other operators given below. Note that
GJ = 1 for the simple operator expressions given in equa-
tion (46) and below in equations (47)–(53). Importantly,
for the dominant CPHS ensemble subspaces considered
above GC reads GC = 1 for all values of U/t. It follows
that in the pseudofermion expressions of the operator (46)
and operators (47)–(51) given below the coefficient CJ re-
duces to a phase factor, CJ = ei j∆PJ , and thus is such
that |CJ | = 1. Moreover, for other i = 0 rotated-electron
operators as those provided below in equations (52) and
(53) the value of the coefficient GC is independent of U/t.
(The general expression of the momentum deviation ∆PJ

is given in Section 5 and that of GC is provided below in
equation (68).) That for N -electron operators such that
N = 1, 2 the spectral weight generated by application
onto the ground state of the i > 0 rotated-electron opera-
tors corresponding to the

∑
i summation of the last term

on the right-hand side of equation (32) is extremely small
and can be ignored is confirmed by the recent studies of
reference [22].

To create one spin-up rotated electron at the empty
site j, a simple process corresponds to create a local c0
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pseudofermion with the operator f †
xj, c0,

c̃†j, ↑ (1 − ñj, ↓) =
1

CJ
f †

xj, c0, (47)

and c̃j, ↑ (1− ñj, ↓) = 1
CJ

fxj, c0 to annihilation of one spin-
up rotated electron at the singly-occupied site j. Such pro-
cesses also involve creation and annihilation, respectively,
of an empty site in the effective s1 lattice. When the ini-
tial ground state belongs to a m = 0 CPHS ensemble
subspace, there is for the former process a single s1 pseud-
ofermion hole in the excited state, which corresponds to
the created site.

We note that the processes of the operator expressions
of equations (46) and (47) also involve the annihilation
of a +1/2 Yang holon, whereas the processes of the op-
erator expressions c̃j, ↓ (1 − ñj, ↑) = 1

CJ
fxj, c0 fxj′ , s1 and

c̃j, ↑ (1 − ñj, ↓) = 1
CJ

fxj, c0 involve the creation of a +1/2
Yang holon. Similarly, the processes of the operator ex-
pression of equation (47) and those of c̃j, ↑ (1 − ñj, ↓) =
1

CJ
fxj, c0 involve the creation and annihilation, respec-

tively, of a +1/2 HL spinon. In the remaining cases con-
sidered below we do not specify the elementary processes
of creation or annihilation of +1/2 Yang holons and +1/2
HL spinons, which are taken into account implicitly by
the pseudofermion description, as discussed above.

(ii) One of the simplest processes associated with the
creation of one spin-up rotated electron at a spin-down
rotated-electron singly occupied site j involves the anni-
hilation a local c0 pseudofermion with the operator fxj, c0

and of a local s1 pseudofermion with the operator fxj′ , s1

and the creation of a local c1 pseudofermion with the op-
erator f †

xj′′ , c1 such that j′ = jn↑ and j′′ = j[1 − n], re-
spectively,

c̃†j, ↑ ñj, ↓ =
1

CJ
f †

xj′′ , c1 fxj, c0 fxj′ , s1. (48)

Then c̃j, ↑ ñj, ↓ = 1
CJ

f †
xj′ , s1 f †

xj , c0 fxj′′ , c1 refers to anni-
hilation of one spin-up rotated electron at a doubly oc-
cupied site j. Moreover, to create one spin-down rotated
electron at a spin-up rotated-electron singly occupied site
j, a simple process corresponds to annihilate a local c0
pseudofermion with the operator fxj , c0 and to create a
local c1 pseudofermion with the operator f †

xj′ , c1 such that
j′ = j[1 − n],

c̃†j, ↓ ñj, ↑ =
1

CJ
f †

xj′ , c1 fxj, c0. (49)

In this case c̃j, ↓ ñj, ↑ = 1
CJ

f †
xj, c0 fxj′ , c1 corresponds to

annihilation of one spin-down rotated electron at a doubly
occupied site j.

(iii) A simple process involved in the creation of two ro-
tated electrons of opposite spin projection onto the empty
site j corresponds to creation of a local c1 pseudofermion
with the operator f †

xj′ , c1 such that j′ = j[1 − n],

c̃†j, ↓ c̃†j, ↑ =
1

CJ
f †

xj′ , c1. (50)

It follows that c̃j, ↑ c̃j, ↓ = 1
CJ

fxj′ , c1 refers to annihilation
of two rotated electrons of opposite spin projection onto
a doubly-occupied site j. This involves annihilation of a
local c1 pseudofermion with the operator fxj′ , c1 such that
j′ = j[1 − n].

(iv) One of the simplest processes associated with the
annihilation of one spin-up rotated electron and creation
of one spin-down rotated electron at the singly-occupied
site j, involves the creation of a local s1 pseudofermion
with the operator f †

xj′ , s1 such that j′ = jn↑,

c̃†j, ↓ c̃j, ↑ =
1

CJ
f †

xj′ , s1. (51)

Then c̃†j, ↓ c̃j, ↑ = 1
CJ

fxj′ , s1 corresponds to annihilation of
one spin-down rotated electron and creation of one spin-
up rotated electron at the singly-occupied site j. This in-
volves the annihilation of a local s1 pseudofermion with
the operator fxj′ , s1 such that j′ = jn↑.

For local rotated-electron operators generating more
complex processes involving creation or annihilation of
several rotated electrons, the creation and annihilation
of local c0 pseudofermions is always associated with cre-
ation and annihilation of rotated-electron singly occupied
sites, respectively. Since the local c0 pseudofermions and
c0 pseudofermion holes occupy the same sites jl and jh

as the rotated-electron singly occupied sites and rotated-
electron doubly-occupied and unoccupied sites, respec-
tively, there is a one-to-one correspondence between the
rotated-electron and c0 pseudofermion algebras.

However, once the composite local αν �= c0 pseud-
ofermions have internal structure that involves 2ν rotated-
electron sites with different index j, the operational
relation of rotated electrons to such composite quantum
objects is more involved. This justifies why the expressions
of the local rotated-electron operators in terms of creation
and annihilation pseudofermion operators involve a su-
perposition of different pseudofermion expressions, corre-
sponding to the set of compatible J-CPHS ensemble sub-
spaces. Nevertheless, creation onto the ground state of a cν
pseudofermion (and sν pseudofermion) always involves ν
rotated-electron doubly occupied sites and ν unoccupied
sites (and ν spin-down rotated-electron singly occupied
sites ν spin-up rotated-electron singly occupied sites). In
general, the excited-energy-eigenstate ν rotated-electron
unoccupied sites (and ν spin-up rotated-electron singly oc-
cupied sites) of a created cν pseudofermion (and sν pseud-
ofermion) are generated by annihilating an equal number
of +1/2 Yang holons (and +1/2 HL spinons) of the initial
ground state.

For the creation of a local cν pseudofermion, each of
the ν new created rotated-electron doubly occupied sites
can result from creation of a rotated-electron pair onto
an unoccupied site or of a rotated electron onto a singly-
occupied site. The latter case involves always one of the
elementary processes associated with the pseudofermion
terms given just after equations (46) and (47). On the
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other hand, for the creation of a local sν pseudofermion
such that ν > 1, the ν involved spin-down rotated-electron
singly occupied sites can result from creation of spin-down
rotated electrons onto unoccupied sites or from recombi-
nation of pre-existing ground-state s1 pseudofermions, as
further discussed below.

For instance, let us consider two J-CPHS ensemble
subspaces contained in different CPHS ensemble sub-
spaces which except for the occupancies of the c1 and c2
branches have the same pseudofermion numbers. For such
branches, one has {Nc1 = 2, Nc2 = 0} for the J-CPHS
ensemble subspace (I) and {Nc1 = 0, Nc2 = 1} for the
J-CPHS ensemble subspace (II). Let us consider that the
local rotated-electron operator behind the transitions to
both subspaces is the same and involves creation of two
rotated electrons of spin projections σ =↑ and σ =↓ onto
the spin-down singly occupied site j and spin-up singly
occupied site j +1, respectively. For the subspace (I), this
corresponds simply to the process of equation (48) for the
site j and the process of equation (49) for the site j + 1.
For the subspace (II), in order to create two rotated elec-
trons of spin projections σ =↑ and σ =↓ onto the spin-
down singly occupied site j and spin-up singly occupied
site j + 1, respectively, we need to annihilate two local
c0 pseudofermions with the operators fxj , c0 and fxj+1, c0

and a local s1 pseudofermion with the operator fxj′ , s1

such that j′ = jn↑ and to create a local c2 pseudofermion
with the operator f †

xj′′ , c2 such that j′′ = j[1 − n],

c̃†j, ↑ c̃†j, ↓ ñj, ↓ ñj, ↑ =
1

CJ
f †

xj′′ , c2 fxj, c0 fxj′ , s1 fxj+1, c0.

(52)

It should be mentioned that in spite of the annihilation
of one s1 pseudofermion, this process does not involve the
corresponding creation of a s1 pseudofermion hole. Indeed,
it involves the annihilation of the site j′ = jn↑ in the
effective s1 lattice. Thus, when the initial ground state
belongs to a m = 0 CPHS ensemble subspace, in spite of
the annihilation of the s1 pseudofermion the excited state
corresponds to a fully occupied s1 band, as the initial
ground state.

A similar process gives rise to creation of a local s2
pseudofermion provided that creation of the two rotated-
electron doubly-occupied sites is replaced by creation of
two spin-down rotated electron singly occupied sites. How-
ever, in this case there is the possibility that one (or both)
the spin-down spinons needed for creation of the local s2
pseudofermion is (or are) generated from annihilation of
one (or two) ground-state s1 pseudofermion(s). Such pro-
cesses can dress any rotated-electron process and are be-
hind the occurrence of an infinite number of compatible J-
CPHS ensemble subspaces for each local rotated-electron
operator. These non-dominant pseudofermion processes
do not obey the relation (45) (which is not an exact
rotated-electron selection rule) and for all finite values of
U/t amount to less than 6% of the rotated-electron spec-
tral weight [22]. For instance, in order to create one spin-
down rotated electron at the empty site j, in addition to

the pseudofermion process (46) there is for instance a pro-
cess corresponding to the creation of a c0 pseudofermion
with the operator f †

xj , c0 and of a s2 pseudofermion with

the operator f †
xj′′ , s2 such that j′′ = j[n↑ − n↓] and to

the annihilation of a s1 pseudofermion with the operator
f †

xj′ , s1 such that j′ = jn↑,

c̃†j, ↓ (1 − ñj, ↑) =
1

CJ
f †

xj′′ , s2 fxj′ , s1 f †
xj, c0. (53)

We emphasize that the amount of spectral weight
transferred from the ground state by the operator (46)
is much larger than that transferred by the operator (53).
Indeed, the J-CPHS ensemble subspace associated with
the expression (46) belongs the dominant CPHS ensemble
subspace of the local rotated-electron operator, whereas
the J-CPHS ensemble subspace corresponding the expres-
sion (53) does not. Note that in the present case the
two competing J-CPHS ensemble subspaces can have the
same pseudofermion deviation numbers and values ex-
cept for the occupancies of the s1 and s2 branches. Thus,
the processes generated by the operators (46) and (53)
correspond to J-CPHS ensemble subspaces belonging to
different CPHS ensemble subspaces such that {∆Ns1 =
1, Ns2 = 0} and {∆Ns1 = −1, Ns2 = 2}, respectively.
Similar dressing processes involving creation of sν pseud-
ofermions belonging to ν > 1 branches by annihilation
of one to ν ground-state s1 pseudofermions can occur for
all rotated-electron processes but correspond to very fast
decreasing values of the amount of spectral weight trans-
ferred from the ground state for increasing number of
pseudofermion processes [3,22]. Moreover, we recall that
the subspace summation on the right-hand side of the
spectral-function expression (36) is limited to the compat-
ible CPHS ensemble subspaces: their pseudofermion num-
ber deviations and numbers obey the sum rules (18), (19),
(39), and (43) and selection rules (21), (40), and (42).

We could present here other pseudofermion terms of
increasing complexity, corresponding to the local rotated-
electron operators considered above. However, the amount
of spectral weight transferred from the ground state by
the pseudofermion operator terms describing the above-
mentioned dressing processes involving creation of sν
pseudofermions such that ν > 1 by annihilation of an
increasing number of ground-state s1 pseudofermions de-
creases very rapidly for increasing values of ν. Also the
spectral weight transferred from the ground state by the
operator terms with increasing value for the index i of the
expression (32) of the general operator Θ̂l

N , j decreases
very rapidly. For instance, for the one-electron spectral
weight the contributions from dressing sν pseudofermion
processes for ν > 2 and the terms of index i > 1 of the
expression (32) for N = 1 are typically beyond numer-
ical measurability. Therefore, as far as numerical mea-
surability is concerned, only a few pseudofermion terms
contribute to the actual electronic spectral-weight distri-
butions [3,22].
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5 The spectral function as a convolution
of pseudofermion spectral functions

In this section we express the spectral functions (37) as
a convolution of pseudofermion, independent −1/2 holon,
and independent −1/2 spinon spectral functions. The ex-
cited energy eigenstates appearing on the right-hand side
of equation (37) can be written as the following pseud-
ofermion Slater determinant,

|f.L, C〉 =
∏

αν

F †
f, αν |0〉;

F †
f, αν =

+q0
αν∏

q̄j=−q0
αν

[
Nαν(q̄j) f †

q̄, αν + [1 −Nαν(q̄j)]
]
.

(54)

Here and in other expressions below |0〉 is the pseud-
ofermion vacuum such that fq̄j , αν |0〉 = 0 for all αν
branches and canonical-momentum values. In turn, ac-
cording to equations (C.24) and (C.25) of reference [9],
the ground state corresponds to a canonical-momentum
densely packed occupancy for the c0 and s1 pseudofermion
bands and the Slater determinant has the following sim-
pler form,

|GS〉 =
∏

αν=c0, s1

F †
GS, αν |0〉;

F †
GS, αν =

+q0
F αν∏

q̄j=−q0
F αν

f †
q̄j , αν ; αν = c0, s1;

F †
0−GS, αν =

q0
F αν, +1∏

q̄j=q0
F αν, −1

f †
q̄j , αν ; αν = c0, s1;

F †
J−GS, αν =

q̄F αν, +1∏

q̄j=q̄F αν, −1

f †
q̄j , αν ; αν = c0, s1. (55)

The generators F †
0−GS, αν and F †

J−GS, αν given here cor-
respond to densely packed distributions introduced be-
low and the discrete canonical-momentum values of the
pseudofermion operators f †

q̄j , αν of their expressions are
those of the CPHS ensemble subspace which the ground
state |GS〉 and the excited state |f.L; C〉 of equation (54)
belong to, respectively. The Fermi points appearing in
the products of their expressions of equation (55) read
q0
Fαν, ±1 = ±q0

Fαν ± [2π/L]∆N0,F
αν,±1 and q̄Fαν, ±1 =

±q0
Fαν±[2π/L][∆NF

αν,±1±QΦ
αν(±q0

Fαν)/2π], respectively,
where the deviation numbers ∆N0,F

αν,±1 and ∆NF
αν,±1 are

those of equation (35).
The excited-energy-eigenstate canonical-momentum

distribution function Nαν(q̄j) on the right-hand side of

equation (54) can be written as,

Nαν(q̄j) = N ph
αν (q̄j) + ∆NNF

αν (q̄j); αν = c0, s1;

N ph
αν (q̄j) = N−0

αν (q̄j) + ∆N phF
αν (q̄j); αν = c0, s1;

N−0
αν (q̄j) = N 0

αν(q̄j) + ∆NF
αν(q̄j); αν = c0, s1;

Nαν(q̄j) = ∆NNF
αν (q̄j) + ∆NF

αν(q̄j); αν �= c0, s1. (56)

Here N−0
αν (q̄j) and N−0

αν (qj), such that N−0
αν (q̄j) =

N−0
αν (qj), correspond to the excited densely

packed distributions
∏

αν=c0, s1 F †
J−GS, αν |0〉 and

∏
αν=c0, s1 F †

0−GS, αν |0〉, respectively. Furthermore,
the ground-state distribution N 0

αν(q̄j) is both such
that q̄j = qj and N 0

αν(q̄j) = N0
αν(qj), where N0

αν(qj)
is the ground-state bare-momentum distribution func-
tion given in equations (C.1)–(C.3) of reference [9].
Thus, ∆NF

αν(q̄j) = ∆NF
αν(qj) describes αν = c0, s1

pseudofermion addition to or removal from the Fermi
points. Moreover, ∆NNF

αν (q̄j) = ∆NNF
αν (q̄j) describes

αν pseudofermion creation and/or annihilation away
from the Fermi points for the αν = c0, s1 branches and
creation of αν pseudofermions at canonical-momentum
values such that |q̄j | < q0

αν for the αν �= c0, s1 branches,
whereas for the latter branches ∆NF

αν(q̄j) = ∆NF
αν(q̄j)

describes creation of αν �= c0, s1 pseudofermions at
the limiting canonical-momentum values q̄j = ±q0

αν .
Finally, the deviation ∆N phF

αν (q̄j) = ∆NphF
αν (qj)

corresponds to low-energy and small-momentum
αν = c0, s1 pseudofermion particle-hole processes.
For n = 1 (and/or m = 0) the excitation subspace
is such that ∆N phF

c0 (q̄j) = ∆NphF
c0 (qj) = 0 (and/or

∆N phF
s1 (q̄j) = ∆NphF

s1 (qj) = 0). The above deviations are
such that,

+q0
αν∑

q̄j=−q0
αν

∆N phF
αν (q̄j) = 0;

+q0
αν∑

q̄j=−q0
αν

∆NNF
αν (q̄j) = ∆NNF

αν ;

+q0
αν∑

q̄j=−q0
αν

∆NF
αν(q̄j) = ∆NF

αν ; αν = c0, s1.

Since for the αν �= c0, s1 pseudofermion branches
there is no occupancy in the initial ground state, the
canonical-momentum distribution function is such that,
∑+q0

αν

q̄j=−q0
αν

∆Nαν(q̄j) = NNF
αν + NF

αν . [See Eq. (35).]

The generator F †
f, αν given in equation (54) can be

written as,

F †
f, αν = F †

p−h, αν F †
J−NF, αν F †

J−GS, αν ; αν = c0, s1,

= F †
NF, αν F †

F, αν ; αν �= c0, s1.

The expressions of the generators F †
J−NF, αν , F †

p−h, αν , and
F †

NF, αν in terms of pseudofermion creation and annihila-
tion operators are given in equations (B.1), (B.4), and
(B.5) of reference [3], respectively, and that of the gen-
erator F †

J−GS, αν is provided in equation (55), whereas
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the generator F †
F, αν creates αν �= c0, s1 pseudofermions

at q = ±q0
αν . The generators F †

p−h, αν F †
J−GS, αν and

F †
J−NF, αν are associated with the deviations N ph

αν (q̄j)
and ∆NNF

αν (q̄j) of equation (56), respectively, F †
p−h, αν

corresponds to the deviation ∆N phF
αν (q̄j) of the same

equation and thus generates the low-energy and small-
momentum αν = c0, s1 pseudofermion particle-hole pro-
cesses (C). The operators F †

NF, αν and F †
F, αν refer to the

αν �= c0, s1 branches and are associated with the devia-
tions ∆NNF

αν (q̄j) and ∆NF
αν(q̄j), respectively.

The precise expression of the spectral functions of
equation (37) depends on the specific form of the local
operator Θ̃l

Ni, j , whose expression includes contributions
from all αν branches with finite pseudofermion occupancy
in the corresponding J-CPHS ensemble subspace. For each
such a subspace that operator expression has the following
general form,

Θ̃l
Ni, j =

1
GC

[
∏

αν

Θ̃l,i
j′, αν

]
, (57)

where the real positive number GC whose expression is
given below in equation (68) is that appearing in the
general expression of the coefficient CJ provided in equa-
tion (46) and we recall that j′ = jn∗

αν denotes the integer
number closest to jn∗

αν . In equation (57) and in the re-
maining of this paper θ(x) is such that θ(x) = 1 for x > 0
and θ(x) = 0 for x ≤ 0.

As mentioned in Section 4, the value of the coefficient
GC appearing in the general expression for the operator
Θ̃l

Ni, j given in equation (57) is the same for all J-CPHS
ensemble subspaces belonging to a given CPHS ensem-
ble subspace, whereas that of the real positive numbers
GJ and |CJ | of equation (46) is specific to each J-CPHS
ensemble subspace. Furthermore, when the expression of
the local operator Ôl

N , j of equation (7) is independent of
U/t, the same occurs for the related operators Θ̂l

N , j and
Θ̃l

N0, j of equations (27, 28) and (32), respectively. It fol-
lows that in the case of the i = 0 operator Θ̃l

N0, j , the value
of the coefficient GC appearing in its expression given in
equation (57) is also independent of U/t. Fortunately, for
the dominant CPHS ensemble subspaces considered in the
previous section, such a value can be found from analy-
sis of the problem for U/t = 0 or U/t = ∞. One then
finds that GC = 1 in the Θ̃l

N0, j = 1
GC

[
∏

αν Θ̃l,0
j′, αν ] ex-

pression corresponding to the dominant CPHS ensemble
subspaces, as pointed out in Section 4.

The operator Θ̃l,i
j′, αν appearing in equation (57) has

the following general form for the αν branches with finite
pseudofermion occupancy in the J-CPHS subspace,

Θ̃l,i
j′, αν = e−i∆P 0

αν j′a0
αν Θ̃l,NF,i

j′, αν Θ̃l,F,i
αν .

Here the operators Θ̃l,NF,i
j′, αν and Θ̃l,F,i

αν are associated
with the elementary processes (A) and (B), respectively,
and the phase-factor momentum l∆P 0

αν is given be-
low. Considering that [xj′ − xj ] = 0, it is such that

−i
∑

αν ∆P 0
ανj′a0

αν = −ij∆PJ . Here the summation
∑

αν
is over the αν branches with pseudofermion occupancy
in the J-CPHS ensemble subspace and ∆PJ is the mo-
mentum deviation of the coefficient CJ = ei j∆PJ [GC/GJ ]
given in equation (46), which reads,

∆PJ =
∑

αν

∆P 0
αν .

Let us proceed by studying the phase factor e−i∆P 0
αν j′a0

αν

and operators Θ̃l,F,i
αν and Θ̃l,NF,i

j′, αν whose product gives the
operator Θ̃l,i

j′, αν . We start by characterizing for each αν
branch the elementary processes that originate the phase
factor e−i∆P 0

ανj′a0
αν . The expression of the local opera-

tor Θ̃l,i
j′, αν does not involve the generator of the elemen-

tary processes (C), F †
p−h, αν , but provides the momen-

tum l∆P phF
αν for such processes through a phase factor,

e−i∆P phF
αν j′a0

αν . Here l∆P phF
αν = l[2π/L] [mαν,+1−mαν,−1]

is the small momentum deviation generated by the αν =
c0, s1 pseudofermion particle-hole elementary processes
(C) and mαν,±1 is the number of such processes of momen-
tum ±[2π/L] in the vicinity of the Fermi points ±q0

Fαν .
Furthermore, each αν = c0, s1 pseudofermion created or
annihilated at the Fermi point ι q0

Fαν by the elementary
processes (B) contributes with a phase factor e−iι q0

F ανj′a0
αν

or e+iι q0
F ανj′a0

αν , respectively, where ι = ±1. This leads
to a phase factor e−i2q0

F αν∆J0,F
αν j′a0

αν , where 2∆J0,F
αν =

∆N0,F
αν, +1 −∆N0,F

αν, −1 and the number deviation ∆N0,F
αν, ±1

is that defined in equation (35). Moreover, each cν �= c0
and sν �= s1 FP current scattering center created by the
elementary processes (B) contributes with a phase factor
e−iι q0

F c0j′a0
c0 and e−iι q0

F c0j′a0
c0 e+iι 2q0

F s1j′a0
s1 , respectively.

On the other hand, the scatter-less bare-momentum shift
contributes with a phase factor e−i[Q0

αν/L]j′a0
cν for each of

the N0
αν pseudofermions of the initial ground state, what

gives [e−i[Q0
αν/L]j′a0

cν ]N
0
αν = e−iq0

F αν [Q0
αν/π]j′a0

cν with αν =
c0, s1. Adding all these contributions leads to the above
net phase factor e−i∆P 0

αν j′a0
αν for the αν = c0, s1 branches

whose phase-factor momentum reads l∆P 0
αν = l[∆P phF

αν +
∆PF

αν ]. For densities in the ranges 0 < n < 1 and 0 < m <
n, the momentum ∆PF

αν appearing in that phase factor is
given by ∆PF

c0 = 4kF [ ∆JF
c0 +

∑∞
ν=1 JF

cν +
∑∞

ν=2 JF
sν ] and

∆PF
s1 = 2kF↓[ ∆JF

s1 − 2
∑∞

ν=2 JF
sν ] for the αν = c0 and

αν = s1 branches, respectively. It results from the current
contributions associated with the c0 and s1 Fermi points
±2kF and ±kF↓, respectively. Moreover, each cν �= c0
pseudofermion created by the elementary processes (A)
contributes with a phase factor e−i(1+ν)πj′a0

cν what leads
to a net phase factor e−i∆P 0

cνj′a0
cν for the cν �= c0 branches

such that ∆P 0
cν = (1 + ν)πNcν . Finally, the phase-factor

momentum vanishes for the sν �= s1 branches. Thus, the
phase-factor momenta contributing to ∆PJ read,

l∆P 0
αν = l[∆P phF

αν + ∆PF
αν ], αν = c0, s1;

l∆P 0
cν = l(1 + ν)πNcν , cν �= c0; l∆P 0

sν = 0, sν �= s1.
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Next we consider the operator Θ̃l,F,i
αν . For the cν �= c0

and sν �= s1 branches, that operator creates 2νNF
cν

independent −1/2 holons of momentum π and 2νNF
sν in-

dependent −1/2 spinons of momentum zero, respectively.
(The only effect of the creation of the corresponding NF

cν

cν �= c0 FP current scattering centers and NF
sν sν �= s1

FP current scattering centers [10], respectively, is the
above contribution to the phase factor e−i∆P 0

c0j′a0
c0 and

e−i∆P 0
c0j′a0

c0e−i∆P 0
s1j′a0

s1 , respectively.) For the αν = c0, s1
branches the operator Θ̃l,F,i

αν is such that,

e−i2q0
αν ∆J0,F

αν j′a0
αν Θ̃l,F,i

αν =
(

1
N∗

αν

) |∆NF
αν |

2

×
∏

ι=±1

{
Θ(∆NF

αν, ι)
∆NF

αν, ι∏

i′=1

[ N∗
αν∑

j′′=1

e−iι(q0
αν+2π i′/L)a0

αν(j′−j′′)

× f †
xj′′ , αν

]
+ Θ(−∆NF

αν, ι)

×
|∆NF

αν, ι|−1∏

i′=0

[ N∗
αν∑

j′′=1

eiι(q0
αν−2π i′/L)a0

αν(j′−j′′)fxj′′ , αν

]}
;

αν = c0, s1.

Thus, that operator can be written as,

Θ̃l,F,i
αν =

∏

ι=±1

{
Θ(∆NF

αν, ι)
∆NF

αν, ι∏

i′=1

f †
ι(q0

αν+2π i′/L), αν

+ Θ(−∆NF
αν, ι)

|∆NF
αν, ι|−1∏

i′=0

fι(q0
αν−2π i′/L), αν

}
; αν = c0, s1,

where we omitted corrections of order 1/L to the momen-
tum value q0

αν appearing in the phase factor. However,
these corrections must be considered in the momentum
of the pseudofermion operators. In the above two equa-
tions the pseudofermion operators correspond to spatial
and canonical-momentum variables, respectively, and in
the argument of the exponentials appearing in these equa-
tions and in other equations given below i is the usual
imaginary number. (It is not the index i of the operator
Θ̃l,F,i

αν , whereas i′ is a summation index.) Moreover, in the
above equations and in the remaining of this paper Θ(x)
is such that Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0.

We finish the study of the operator Θ̃l,i
j′, αν by consid-

ering the operator Θ̃l,NF,i
j′, αν associated with the elementary

processes (A), whose expression refers to a given J-CPHS
subspace. In order to arrive to that expression in terms
of the local αν pseudofermion creation and annihilation
operators, we recall that our study refers to spectral func-
tions of form (7) whose operator Ôl

N , j expression involves
N elementary electronic operators which create or anni-
hilate electrons in a compact domain of lattice sites. For
such an operator the general expression of the correspond-
ing operators Θ̃l,NF,i

j′, αν involves Nαν local αν pseudofermion

creation and annihilation operators for the αν = c0, s1
branches (and creation operators for the αν �= c0, s1
branches) which refer to a compact domain of Nαν ef-
fective αν lattice sites. The operators (46)–(53) involve
the product of operators whose expressions involve ele-
mentary operators of a single αν branch and except for a
multiplicative constant are particular examples of such a
general expression, which has the following form,

Θ̃l,NF,i
j′, αν = (n∗

αν)
Nαν−1

2

[
Θ(∆NNF

αν )

×
∆NNF

αν +NphNF
αν +j′−1∏

j′′=j′

Nαν+j′−1∏

j′′′=∆NNF
αν +NphNF

αν +j′

f †
xj′′ , αν fxj′′′ , αν

+ θ(−∆NNF
αν )

×
|∆NNF

αν |+NphNF
αν +j′−1∏

j′′=j′

Nαν+j′−1∏

j′′′=|∆NNF
αν |+NphNF

αν +j′

fxj′′ , αν f †
xj′′′ , αν

]
;

αν = c0, s1,

and

Θ̃l,NF,i
j′, αν = (n∗

αν)
Nαν−1

2

Nαν+j′−1∏

j′′=j′
f †

xj′′ , αν ;

cν �= c0, n < 1; sν �= s1, m < n.

Here the spatial coordinates x0, x1,...,xNαν−1 correspond
to the compact domain of Nαν effective αν lattice sites
where the number Nαν is given in equation (46).

Let us consider the operator Θ̃l,i
k, αν , which is the

Fourier transform of the above local operator Θ̃l,i
j′, αν ,

Θ̃l,i
k, αν =

1√
N∗

αν

N∗
αν∑

j′=1

e+i lkj′a0
αν Θ̃l,i

j′, αν .

This operator can be expressed in terms of the following
momentum convolution,

Θ̃l,i
k, αν =

∑

k′
Θ̃l,NF,i

k−k′, αν Θ̃l,F,i
αν δk′, l∆P 0

αν
= Θ̃l,NF,i

k−l∆P 0
αν , ανΘ̃l,F,i

αν ,

where the operator Θ̃l,F,i
αν was given above and Θ̃l,NF,i

k, αν

is the Fourier transform of the local operator Θ̃l,NF,i
j′, αν . It
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reads,

Θ̃l,NF,i
k, αν =

(
1

Na

)Nαν−1
2

{
Θ(∆NNF

αν )

[ ∆NNF
αν +NphNF

αν −1∏

i′=0

×
Nαν−1∏

i′′=∆NNF
αν +NphNF

αν

( +q0
αν∑

q̄i′=−q0
αν

e−ii′a0
αν q̄i′ f †

q̄i′ , αν

)

×
( +q0

αν∑

q̄i′′=−q0
αν

eii′′a0
αν q̄i′′ fq̄i′′ , αν

)]

× δ
k, l[

∑∆NNF
αν +N

phNF
αν −1

i′=0
q̄i′−

∑Nαν−1

i′′=∆NNF
αν +N

phNF
αν

q̄i′′ ]

+ θ(−∆NNF
αν )

[ |∆NNF
αν |+NphNF

αν −1∏

i′=0

×
Nαν−1∏

i′′=|∆NNF
αν |+NphNF

αν

( +q0
αν∑

q̄i′=−q0
αν

eii′a0
αν q̄i′ fq̄i′ , αν

)

×
( +q0

αν∑

q̄i′′=−q0
αν

e−ii′′a0
αν q̄i′′ f †

q̄i′′ , αν

)]

× δ
k,l[−∑ |∆NNF

αν |+N
phNF
αν −1

i′=0
q̄i′+

∑Nαν−1

i′′=|∆NNF
αν |+N

phNF
αν

q̄i′′ ]

}
;

αν = c0, s1

Θ̃l,NF,i
k, αν =

(
1

Na

)Nαν−1
2

[Nαν−1∏

i′=0

+q0
αν∑

q̄i′=−q0
αν

e−ii′a0
αν q̄i′ f †

q̄i′ , αν

]

× δk, l[cαν

∑Nαν−1
i′=0

q̄i′ ]
; cν �= c0, n < 1;

sν �= s1, m > 0. (58)

Here the set q̄0, q̄1, q̄2,...,q̄Nαν−1 refers to Nαν summa-
tion canonical-momentum variables associated with the
αν pseudofermion bands. We note that the canonical-
momentum values in the Krönecker δ’s of equation (58)
run under the summations but not under the prod-
ucts appearing in that equation. For the αν �= c0, s1
branches, the Nαν -αν pseudofermion operator Θ̃l,NF,i

k, αν cre-
ates and annihilates |∆NNF

αν | αν pseudofermions when
∆NNF

αν > 0 and ∆NNF
αν < 0, respectively, and generates

NphNF
αν = 0, 1, ... finite-momentum and finite-energy αν

pseudofermion particle-hole processes. For the αν �= c0, s1
branches, it creates NNF

αν αν pseudofermions of bare-
momentum q such that |q| < q0

αν .
In the case of the αν �= c0, s1 branches, the gen-

eral expression given in equation (58) for the operator
Θ̃l,NF,i

k, αν is valid for densities such that the corresponding
ratios n∗

αν = N∗
αν/Na have finite values. For the cν �= c0

(and sν �= s1) pseudofermion branches and electronic den-
sity n = 1 (and spin density m = 0) all pseudofermions
separate into 2ν independent −1/2 holons (and 2ν inde-
pendent −1/2 spinons). Therefore, the operator given in
equation (58) does not exist. Moreover, for n = 1 (and

m = 0) the above generator F †
p−h, c0 (and F †

p−h, s1) of the
elementary processes (C) reduces to F †

p−h, c0 = 1 (and
F †

p−h, s1 = 1). However, our theory also applies for elec-
tronic density n = 1 (and spin density m = 0), provided
that we consider the corresponding restrictions in the c0
(and s1) excitation spectrum and take into account that
Θ̃l,i

k, αν = Θ̃l,NF,i
k, αν , for the cν �= c0 (and sν �= s1) branches.

For the αν = c0, s1 branches the pseudofermion
weight distribution involves the following matrix element,

〈0|FJ−GS, αν FJ−NF, αν Fp−h, αν Θ̃l,i
k, αν F †

GS, αν |0〉;
αν = c0, s1.

Our study refers to very large values of L when the com-
mutator [F †

p−h, αν , F †
J−NF, αν ] = 0 vanishes and the op-

erator Θ̃l,F,i
αν is such that Θ̃l,F,i

αν F †
GS, αν = F †

0−GS, αν and
thus the matrix element can be rewritten as,

〈0|FJ−GS, αν Fp−h, αν FJ−NF, ανΘ̃l,NF,i
k−l∆P 0

αν , αν F †
0−GS, αν |0〉;

αν = c0, s1.

When applying the generators F †
f, L, αν and F †

GS, αν of
equations (54) and (55), respectively, onto the pseud-
ofermion vacuum to construct a given energy eigenstate,
the set of αν band discrete canonical-momentum values
{q̄j} of the pseudofermion operators f †

q̄j , αν in the expres-
sions of these generators are those of the CPHS ensemble
subspace which that state belongs to. This rule applies
when one considers the generators of the full energy eigen-
states. (Below we express each J-CPHS as a direct prod-
uct of subspaces. To reach the correct final results, such a
rule does not apply to some of the states which span such
direct-product subspaces.) The same occurs with the dis-
crete canonical-momentum values of the pseudofermion
creation and annihilation operators of the expression of
any operator Θ̃ when it acts onto a given energy eigen-
state. For instance, let |β〉 and |β′〉 be energy eigen-
states. Thus, the discrete canonical-momentum values of
the pseudofermion creation and annihilation operators of
the expression of the operators Θ̃† and Θ̃ in Θ̃†|β′〉 and
Θ̃|β〉 are those of the CPHS ensemble subspace which the
states |β′〉 and |β〉 belong to, respectively. An important
property for our theory is that for L large both choices
lead to the same value for the matrix element 〈β|Θ̃|β′〉.

The operator Θ̃l,NF,i
k, αν of equation (58) is for the

αν = c0, s1 branches such that the commutator
[Fp−h, αν , Θ̃l,NF,i

k, αν ] = 0 vanishes when it acts onto the
CPHS ensemble subspace which the corresponding excited
state belongs to. Furthermore, there occurs a full overlap
of that operator with the generator FJ−NF, αν and for the
αν �= c0, s1 branches there occurs a full overlap of the
operator Θ̃l,NF,i

k, αν given in the second expression of equa-
tion (58) with the generator FNF, αν . The latter full over-
lap results from the lack of αν �= c0, s1 pseudofermion
occupancy of the initial ground state.

A J-CPHS ensemble subspace can be expressed as
the direct product of subspaces, one for each αν branch
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pseudofermion occupancy. In the particular case of the
αν = c0, s1 branches the low-energy and high-energy
physics separate provided that L is large and one can de-
fine two of such product subspaces for each branch. They
are associated with the excitation occupancy configura-
tions generated by the finite-energy elementary processes
(A) and low-energy elementary processes (B, C), respec-
tively. We call p − h, αν = c0, s1 branch subspace the
latter low-energy subspace. Thus, the number of prod-
uct subspaces equals the number of αν branches with
finite pseudofermion occupancy in the J-CPHS ensem-
ble subspace plus two. Finally, for some J-CPHS ensem-
ble subspaces the direct product also includes the in-
dependent −1/2 holon subspace and independent −1/2
spinon subspace. For such subspaces the generator F †

F, αν

either creates NF
αν αν pseudofermions with limiting bare-

momentum values q = ±q0
αν or reads F †

F, αν = 1 when
NF

αν = 0 and thus F †
f, αν = F †

NF, αν (or F †
f, αν does not

exist if n = 1 and αν = cν or m = 0 and αν = sν). The
states which span the αν branch direct-product subspaces
and p − h, αν = c0, s1 branch direct-product subspaces
have the following form,

|f.L; αν〉 ≡ F †
J−NF, αν |GS〉; αν = c0, s1;

|f.L; αν〉 ≡ F †
NF, αν |GS〉; αν �= c0, s1;

|f.L; p − h, αν〉 ≡ F †
p−h, αν F †

J−GS, αν |0〉; αν = c0, s1.

Below we express the spectral functions as convolutions of
p− h, αν and αν pseudofermion spectral functions. How-
ever, in order to reach the same spectral-weight distribu-
tions as by use of the above matrix elements, it turns out
that:
(i) when applying the generators F †

J−NF, αν and F †
NF, αν

onto the ground state |GS〉 to construct a given αν
branch direct-product-subspace state, the set of the
αν band discrete canonical-momentum values {q̄j} of
the pseudofermion operators f †

q̄j , αν in the expressions
of these generators must be those of the ground-state
CPHS ensemble subspace;

(ii) when applying the generator F †
p−h, αν F †

J−GS, αν

onto the pseudofermion vacuum |0〉 to construct
a given p − h, αν = c0, s1 branch direct-product-
subspace state, the set of the αν band discrete
canonical-momentum values {q̄j} of the pseud-
ofermion operators f †

q̄j , αν in the expressions of that
generator must be those of the corresponding excited
energy eigenstate.

The property (i) ensures that the above full matrix-
element overlaps are reproduced. Furthermore, properties
(i) and (ii) also ensure that the contribution from the
unconventional orthogonality catastrophe matrix-element
overlap discussed below is not counted twice.

Below we introduce the αν = c0, s1 pseudofermion
spectral functions and p − h, αν = c0, s1 pseud-
ofermion spectral functions which involve the opera-
tors Θ̃l,NF,i

k−l∆P F
αν , αν and Θ̃l,F,i

αν δk′, l∆P phF
αν

, respectively. The

momentum convolution of these two operators leads
to the correct expression for the operator Θ̃l,i

k, αν such
that Θ̃l,i

k, αν =
∑

k′ Θ̃l,NF,i
k−l∆P F

αν−k′, αν
Θ̃l,F,i

αν δk′, l∆P phF
αν

=

Θ̃l,NF,i
k−l∆P 0

αν , αν Θ̃l,F,i
αν . In turn, the αν �= c0, s1 pseud-

ofermion spectral functions considered below correspond
to the operators Θ̃l,NF,i

k−l∆P 0
αν , αν , which refer to the αν �=

c0, s1 branch direct-product subspaces. For the latter
branches, the pseudofermion spectral function is associ-
ated with the Nαν = NNF

αν > 0 αν pseudofermions cre-
ated by the processes (A), whereas the NF

αν αν pseud-
ofermions of limiting canonical momentum ±q0

αν con-
tribute to the independent −1/2 holon (αν = cν) or −1/2
spinon (αν = sν) spectral function and to the momen-
tum of the αν = c0, s1 spectral functions associated with
the elementary processes (A), through the FP-current-
scattering-center phase factors.

The operators associated with the pseudofermion spec-
tral functions can be written in the corresponding direct-
product subspaces as,

Θ̃l,NF,i
k−l∆P F

αν , αν =
∑

f

〈f.L; αν|Θ̃l,NF,i
k−l∆P F

αν , αν
|GS〉 |f.L; αν〉〈GS|;

αν = c0, s1,

Θ̃l,NF,i
k−l∆P 0

αν , αν =
∑

f

〈f.L; αν|Θ̃l,NF,i
k−l∆P 0

αν , αν |GS〉 |f.L; αν〉〈GS|;

αν �= c0, s1,

Θ̃l,F,i
αν δk, l∆P phF

αν
=

∑

f

〈f.L; p−h, αν|Θ̃l,F,i
αν |GS〉δk, l∆P phF

αν
|f.L; p−h, αν〉〈GS|;

αν = c0, s1.

Here the f summations run over the states which span
such subspaces and the matrix elements are given by,

〈f.L; αν|Θ̃l,NF,i
k−l∆P F

αν , αν
|GS〉 =

(
1

Na

)Nαν−1
2

×e
−isgn(∆NNF

αν )[
∑ |∆NNF

αν |+N
phNF
αν −1

j′=0
−∑Nαν−1

j′=|∆NNF
αν |+N

phNF
αν

]j′a0
αν q̄j′

×δ
k,l[∆P F

αν+sgn(∆NNF
αν )(

∑∆NNF
αν +N

phNF
αν −1

j′=0
−∑Nαν−1

j′=∆NNF
αν +N

phNF
αν

)q̄j′]
;

αν = c0, s1,

〈f.L; αν|Θ̃l,NF,i
k−l∆P 0

αν , αν |GS〉 =
(

1
Na

)Nαν−1
2

e
−i

∑Nαν−1
j′=0

j′ q̄j′

× δk,l[∆P 0
αν+cαν

∑Nαν−1
j′=0

q̄j′ ]
; αν �= c0, s1, (59)
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for the αν pseudofermion spectral functions and

〈f.L; p − h, αν|Θ̃l,F,i
αν |GS〉 δk, l∆P phF

αν
=

〈0|FJ−GS, αν Fp−h, αν F †
0−GS, αν |0〉 δk, l∆P phF

αν
;

αν = c0, s1, (60)

for the p − h, αν = c0, s1 pseudofermion spectral func-
tions.

The simple form of the matrix elements (59) follows
from the full overlap of the generators FJ−NF, αν and
FNF, αν with the operator Θ̃l,NF,i

k, αν for the αν = c0, s1 and
αν �= c0, s1 branches, respectively. Such a full overlap
also justifies that the corresponding αν spectral functions
whose expression is given below have a non-interacting
character. In turn, the evaluation of the matrix element
(60) of the spectral function associated with the αν =
c0, s1 pseudofermion elementary processes (B, C) is a
more involved problem. For the αν = c0, s1 branches
the phase-factor momentum l∆P 0

αν = l[∆P phF
αν + ∆PF

αν ]
involves a term, l∆P phF

αν , which arises from the ele-
mentary processes (C). Interestingly, the dynamics as-
sociated with the overlap of the αν = c0, s1 state
〈f.L; p − h, αν| = 〈0|FJ−GS, αν Fp−h, αν | with the state
Θ̃l,F,i

αν |GS〉 = Θ̃l,F,i
αν F †

GS, αν |0〉 = F †
0−GS, αν |0〉 of the ma-

trix element (60) is not controlled by the operator Θ̃l,NF,i
k, αν

but rather results from the different discrete canonical-
momentum values of the pseudofermion creation and an-
nihilation operators involved in the generators of each of
these states. (For these branches the expression of the
operator Θ̃l,i

k, αν does not include that of the generator
F †

p−h, αν , as mentioned above.) Each discrete canonical
momentum value of the pseudofermion operators involved
in the generators of the former state includes an extra
overall canonical-momentum shift Qαν(q)/L relative to
those of the latter state. If a αν = c0, s1 pseudofermion
or pseudofermion hole is created at the Fermi points by
the elementary processes (B) and thereafter moved from
there by the elementary processes (C) generated by the op-
erator Fp−h, αν , the dynamics associated with the overlap
of the excited-state occupancy configurations generated
by the latter processes with the ground-state generator is
controlled by the orthogonality catastrophe that occurs
in the matrix element (60) due to the overall phase shift
Qαν(q)/2. Such a matrix element involves N0

αν + ∆NF
αν

αν pseudofermions. The occupancy configuration of the
state F †

0−GS, αν |0〉 corresponds to the densely packed mo-
mentum distribution N−0

αν (q̄j) for N0
αν + ∆NF

αν αν pseud-
ofermions. The corresponding discrete canonical momen-
tum values q̄j (occupied and unoccupied) are those of the
ground state, q̄j = qj . The occupancy configuration associ-
ated with the state |f.L; p−h, αν〉 = F †

p−h, αν F †
J−GS, αν |0〉

also refers to N0
αν + ∆NF

αν αν pseudofermions. However,
its discrete canonical momentum values are those of the
excited energy eigenstate. This feature leads to an exotic
overlap for the matrix element (60). Such an overlap is
behind the unusual quantum-liquid spectral properties, as
further discussed below and in reference [3]. We note that

in the absence of the αν = c0, s1 pseudofermion overall
phase shifts Qαν(q)/2, Eq. (11), the matrix element (60)
would vanish, except for the lowest-peak weight such that
Fp−h, αν = 1 and thus ∆P phF

αν = 0.
The spectral function expressions are additive in

the contributions of each ground-state–excited-energy-
eigenstate transition. For each transition, the avail-
able excited-energy-eigenstate pseudofermion discrete
canonical-momentum values are in general slightly dif-
ferent and given by the functional (8). The important
point is that for each ground-state–excited-state transi-
tion one knows the precise values of such discrete pseud-
ofermion canonical momenta. Given these values, the αν
pseudofermion creation and annihilation operators of the
matrix element corresponding to the specific transition
act independently for each αν excitation branch. This
is behind the introduction of the above subspace di-
rect product and follows in part from the factor δαν, α′ν′

on the right-hand side of the pseudofermion anticom-
mutation relation (14). Thus, since the pseudofermion
creation and annihilation operators of each αν branch
act independently for each ground-state–excited-energy-
eigenstate transition, they also do it for the whole spectral
function, which is additive in the contributions of each
ground-state–excited-energy-eigenstate transition. More-
over, as a result of the additive character of the en-
ergy in terms of αν pseudofermion, independent −1/2
holon, and independent −1/2 spinon single energies and
of the corresponding expression of each J-CPHS ensemble
subspace as the direct product of the above considered
subspaces, the excited-energy-eigenstate wave-functions of
the ground-state normal-ordered 1D Hubbard model fac-
torize. It follows that the spectral functions Bl,i(k, ω) of
equation (37), generated by transitions from the ground
state to a given J-CPHS ensemble subspace, can be ex-
pressed as a convolution of pseudofermion spectral func-
tions, one for each branch with finite occupancy in such
a subspace and for the independent −1/2 holons and/or
independent −1/2 spinons, if they have finite occupancy
in the same subspace, and two functions for the particu-
lar case of the αν = c0, s1 branches, as discussed above.
It follows from the form of the matrix elements given in
equation (60) that the contribution of the corresponding
p−h, αν = c0, s1 pseudofermion spectral functions to the
weight overlaps is more involved than that of the remain-
ing pseudofermion, independent −1/2 holon, and indepen-
dent −1/2 spinon spectral functions.

For each J-CPHS ensemble subspace, we introduce
a dimension D associated with the elementary pro-
cesses (A),

D =
∑

αν

θ(Nαν), (61)

where the numbers Nαν are defined in equation (46). For a
general J-CPHS subspace the function Bl,i(k, ω) of equa-
tion (37) can be written as a convolution of the p−h, c0, s1
pseudofermion spectral function, p − h, s1 pseudofermion
spectral function, one Nαν -αν pseudofermion spectral
function for each of the D branches such that Nαν > 0, in-
dependent −1/2 holon spectral function, and independent
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−1/2 spinon spectral function. Thus, let us provide the
general expressions of the spectral functions correspond-
ing to such a general J-CPHS ensemble subspace.

The p − h, αν = c0, s1 pseudofermion spectral func-
tion associated with the elementary processes (B, C) is
given by,

Bl,i
Qαν

(k, ω) =
∑

J−CPHS−αν−(C)

|〈0|FJ−GS, αν Fp−h, αν F †
0−GS, αν |0〉|2

×δ(ω − l∆EphF
αν ) δk, l∆P phF

αν
;

αν = c0, s1 l = ±1 , i = 0, 1, 2, ..., (62)

where the energy and momentum spectra are given be-
low and the matrix element is that of equation (60). The
summation

∑
J−CPHS−αν−(C) runs over the J-CPHS en-

semble subspace αν = c0, s1 pseudofermion occupancy
configurations generated by the elementary processes (C).
The indices Qc0 and Qs1 remind us that the overall phase
shifts of equation (11) have a specific value for each
ground-state–excited-energy-eigenstate transition.

In turn, it follows from the form of the matrix
elements of equation (59) that the αν pseudofermion
spectral function Bl,NF,i

αν (k, ω) associated with the ele-
mentary processes (A) has a non-interacting character
and reads,

Bl,NF,i
αν (k, ω) =

(
1

Na

)Nαν−1 ∑

J−CPHS−αν−(A)

δ(ω−l∆Eαν)

× δk, l∆Pαν ; l = ±1, i = 0, 1, 2, ..., (63)

both for the αν = c0, s1 and αν �= c0, s1 branches.
Here the summation

∑
J−CPHS−αν−(A) runs over the

J-CPHS ensemble subspace αν pseudofermion occupancy
configurations generated by the elementary processes (A).
For the αν �= c0, s1 branches and densities in the domains
0 < n < 1 and 0 < m < n the number of the latter
occupancy configurations is given by Dαν =

(N∗
αν−NF

αν

NNF
αν

)

and thus can be written as follows,
Dcν =
(

Na − N + 2
∑∞

ν′=ν+1(ν
′ − ν)Ncν′ + 2Lc,−1/2 − NF

cν

NNF
cν

)
;

ν > 0,Dsν =
(

N↑ − N↓ + 2
∑∞

ν′=ν+1(ν
′ − ν)∆Ncν′ + 2Lc,−1/2 − NF

sν

NNF
sν

)
;

ν > 1, (64)

where the values of N , N↑, and N↓ are those of the corre-
sponding excited-state CPHS ensemble subspace. We re-
call that for the cν �= c0 (and sν �= s1) branches and elec-
tronic density n = 1 (and spin density m = 0) the spectral
function Bl,NF,i

cν (k, ω) (and Bl,NF,i
sν (k, ω)) of equation (63)

does not exist.
Finally, the form of the operator Θ̃l,F,i

αν implies that
〈GS|FF, ανΘ̃l,F,i

αν |GS〉 = 1 for the αν �= c0, s1 branches

with finite occupancy in the J-CPHS ensemble subspace.
This together with the non-interacting character of
the −1/2 Yang holons and −1/2 HL spinons is behind
the form of the independent −1/2 holon (α = c) and
independent −1/2 spinon (α = s) spectral function,
which reads,
Bl,i

α, −1/2(k, ω) =
1
Cα

δ(ω − lEα) δk, lPα ; α = c, s. (65)

Here the coefficient Cα is given in equation (24). While
all spectral functions provided in equations (63) and (65)
have a non-interacting character, the p−h, c0 and p−h, s1
pseudofermion spectral functions of equation (62) corre-
spond to a more complex problem. The latter functions
are further studied in reference [3] for the metallic phase.

The αν pseudofermion energy spectrum ∆Eαν on
the right-hand side of equations (62) and (63) can be
expressed in terms of the bare-momentum distribution
function deviations. The energy spectra ∆Eαν and
∆EphF

αν appearing in the latter equations and in equa-
tion (62), respectively, and the the independent −1/2
holon (α = c) and independent −1/2 spinon (α = s)
energy Eα of equation (65) read,

∆Eαν =
+q0

αν∑

qj=−q0
αν

∆NNF
αν (qj) εαν(qj);

∆EphF
αν =

2π

L
vαν [mαν, +1 + mαν, −1]; αν = c0, s1;

Eα = µα

[
Lα,−1/2 + δα, c NF

c1 +
∞∑

ν=2

νNF
αν

]
;

α = c, s; µc = 2µ, µs = 2µ0 H. (66)

The momentum spectra corresponding to such energy
spectra are given by,

∆Pαν =
+q0

αν∑

qj=−q0
αν

∆NNF
αν (qj) qj + ∆PF

αν ;

∆P phF
αν =

2π

L
[mαν, +1 − mαν, −1]; αν = c0, s1;

∆PF
c0 = 4kF

[
∆JF

c0 +
∞∑

ν=1

JI
cν +

∞∑

ν=2

JI
sν

]
;

∆PF
s1 = 2kF↓

[
∆JF

s1 − 2
∞∑

ν=2

JI
sν

]
; 0 < n < 1, 0 < m < n;

∆Pcν =
+q0

cν∑

qj=−q0
cν

∆NNF
cν (qj) [(1 + ν)π − qj ];

∆Psν =
+q0

αν∑

qj=−q0
αν

∆NNF
αν (qj) qj ; αν �= c0, s1;

Pc = π [Lc,−1/2 +
∞∑

ν=1

νNF
cν]; Ps = 0. (67)

In these equations εcν(qj) = 2νµ + ε0cν(qj) for ν > 0,
εsν(qj) = 2νµ0 H + ε0sν(qj) for ν > 1, the bands εαν(qj)
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for αν = c0, s1 and ε0αν(qj) for αν �= c0, s1 are defined
by equations (C.15)–(C.21) of reference [9], the small en-
ergy ∆EphF

αν is such that mαν, ±1 is the number of elemen-
tary αν = c0, s1 pseudofermion particle-hole processes
(C) considered above, vαν ≡ vαν(q0

Fαν), and vαν(q) =
∂εαν(q)/∂q.

As further discussed in reference [3], for densities 0 <
n < 1 and 0 < m < n the elementary processes (C) lead-
ing to the spectral-function singular features include con-
tributions from small but finite values of mαν, ±1/Na as
Na → ∞. For n = 1 (and m = 0) the latter processes do
not exist for the c0 (and s1) branch and thus ∆EphF

c0 = 0
and ∆P phF

c0 = 0 (and ∆EphF
s1 = 0 and ∆P phF

s1 = 0).
Let us consider the general situation when the

J-CPHS ensemble subspace has finite occupancy for
the c0 and s1 pseudofermion branches, D − 2 > 0
αν �= c0, s1 pseudofermion branches, independent
−1/2 holons, and independent −1/2 spinons. In this case
the functions Bl,i(k, ω) of equation (37) can be written as,

Bl,i(k, ω) =
1

GC
Gl,i(k, ω)

=

(
∏

α=c, s

1
Cα

) (
D∏

j=1

(
1

Na

)Nανj

[
∑

J−CPHS−ανj−(A)

])

× 1
Na

∑

k′

∑

ω′
Bl,i

Qs1

(
k′, ω′

)
× Bl,i

Qc0

(
k − l

D∑

j=1

∆Pανj

− l
∑

α=c, s

Pα − k′, ω−l

D∑

j=1

∆Eανj −l
∑

α=c, s

Eα − ω′
)

;

GC =

(
∏

α=c, s

Cα

)[
∑

J

∑

k

∫ l∞

0

dω Gl,i(k, ω)

]/

[
∑

f

Na∑

j=1

|〈f.L ; C|Θ̃l
Ni, j |GS〉|2

]
;

Cc ≡ Cc; Cs ≡ GC Cs; i = 0, 1, 2, ...; l = ±1, (68)

where

Gl,i(k, ω) =
∑

k1

∑

ω1

Bl,i
Qc0

(k − k1, ω − ω1)

×
[

D∏

j=1

1
Na

∑

kj+1

∑

ωj+1

Bl,NF,i
ανj

(kj − kj+1, ωj − ωj+1)

]

×
[

D+2∏

j=D+1

Bl,i
αj ,−1/2(kj − kj+1, ωj − ωj+1)

]

× 1
Na

Bl,i
Qs1

(kD+3, ωD+3),

the coefficient GC , which also appears in the quantity
CJ = ei j∆PJ [GC/GJ ] given in equation (46) and in the
operator expression of equation (57), has a uniquely de-
fined value for each CPHS ensemble subspace, Θ̃l

Ni, j is
the corresponding operator on the right-hand side of equa-
tion (32), the summation

∑
f runs over all energy eigen-

states of the CPHS ensemble subspace, and the summa-
tion

∑
J is over all J-CPHS ensemble subspaces of that

subspace. Moreover, the pseudofermion spectral functions
appearing in the Gl,i(k, ω) expression are given in equa-
tions (62) and (63), the independent −1/2 holon and −1/2
spinon spectral functions are provided in equation (65),
αD+1 = c and αD+2 = s labels the independent −1/2
holons and independent −1/2 spinons, respectively, the
momenta k1, k2, ..., kD+3 and energies ω1, ω2, ..., ωD+3 cor-
respond to summation variables, and the index ανj , where
j = 1, ..., D, is such that αν1 = c0, αν2 = s1, and for
j = 3, ..., D ανj refers to the D − 2 αν �= c0, s1 pseud-
ofermion branches such that NNF

αν > 0 for the J-CPHS en-
semble subspace. To reach the second expression of equa-
tion (68) from the expression for Gl,i(k, ω)/GC , we used
the non-interacting form of the spectral functions given
in equations (63) and (65) to perform D + 2 momentum
and energy summations. It follows that the general spec-
tral function Bl,i(k, ω) of equation (37) can be written as
a convolution of the p− h, c0 and p− h, s1 pseudofermion
spectral functions alone, as given in the second expression
of equation (68). We recall that for the i = 0 function
Bl,0(k, ω) the value of the coefficient GC is independent
of U/t and for the dominant CPHS ensemble subspaces
considered in Section 4 corresponding to that function, it
reads GC = 1 for all values of U/t.

For J-CPHS subspaces with no finite pseudofermion
occupancy for the αν �= c0, s1 pseudofermion branches
and/or no independent −1/2 holon and/or independent
−1/2 spinon occupancy, the spectral function Bl,i(k, ω)
has the same general form as in equation (68), except for
the absence in the expression of Gl,i(k, ω) of the spectral
functions corresponding to the missing branches and/or
quantum object types. Note also that the expression for
Gl,i(k, ω) and thus for Bl,i(k, ω) = Gl,i(k, ω)/GC given
in the unnumbered equation after equation (68) is valid
for electronic density n = 1 (and spin density m = 0),
provided that for j = 3, ..., D the index ανj refers to the
D − 2 sν �= s1 (and cν �= c0) pseudofermion branches
such that NNF

αν > 0 for the J-CPHS ensemble subspace.
Moreover, for n = 1 (and m = 0) one must use c0 (and
s1) pseudofermion spectral functions specific to the corre-
sponding excitation spectrum. These functions are stud-
ied elsewhere. However, the second expression of equa-
tion (68) refers to densities in the domains 0 < n < 1 and
0 < m < n only.

The probability amplitudes |〈0|F0−GS, αν×
F †

p−h, αν F †
J−GS, αν |0〉|2 associated with the matrix

element (60) which appear in expression (62) have the
following general form,
∣∣∣〈0|F0−GS, αν F †

p−h, αν F †
J−GS, αν |0〉

∣∣∣
2

=
∣∣∣〈0|fq′

N0
αν+∆NF

αν
,αν · · · fq′

1, ανf †
q̄1,αν · · · f †

q̄
N0

αν+∆NF
αν

,αν |0〉
∣∣∣
2

,

(69)

where αν = c0, s1. In expression (69) we have considered
that the ground state corresponds to pseudofermion anni-
hilation operators and the pseudofermion operators left for
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∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

{f†
q̄1, αν , fq′1, αν} {f†

q̄1, αν , fq′2, αν} · · · {f†
q̄1 , αν , fq′

N0
αν+∆NF

αν
, αν}

{f†
q̄2, αν , fq′1, αν} {f†

q̄2, αν , fq′2, αν} · · · {f†
q̄2 , αν , fq′

N0
αν+∆NF

αν
, αν}
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, (70)
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2

, (71)

the excited energy eigenstate are of creation character. At
this stage, for the evaluation of N -electron spectral func-
tions, the main problem remaining is the computation of
the non-trivial probability amplitude (69), which can be
expressed by the following determinant,

see equation (70) above

for the αν = c0, s1 branches. This result is justi-
fied by the following pseudofermion properties. First,
the pseudofermions have no residual-interaction en-
ergy terms, as discussed in references [3,20]. Second,
the canonical-momentum shift Qαν(qj)/L, which under
the ground-state–excited-energy-eigenstate transition in-
volves all αν = c0, s1 pseudofermions of the initial ground
state, is a zero-energy process [10]. Third, the elementary
pseudofermion processes (C) correspond to αν = c0, s1
pseudoparticle particle-hole processes whose energy spec-
trum is of non-interacting character for the pseudopar-
ticles, what implies that the energy spectrum ∆EphF

αν =
[2π/L] vαν mαν of equation (66) remains linear in mαν for
small finite values of mαν/Na as Na → ∞ [3,20].

In spite of the non-interacting form of the determi-
nant (70), the unusual pseudofermion anticommutation
relations (14) give rise to unusual physics, in the form
of an orthogonality catastrophe. (The absence of such an
orthogonality catastrophe would require that Qαν(q)/2 =
0.) Indeed, replacement of the anticommutator (14) in the
determinant (70) leads to,

see equation (71) above

for the αν = c0, s1 branches, where the overall phase
shift Qαν(qj)/2 is given in equation (11) and the bare-
momentum distribution function Nph

αν(qj) is such that
Nph

αν(qj) = N ph
αν (q̄j). Here N ph

αν (q̄j) is the pseudofermion
canonical-momentum distribution function given in equa-
tion (56), which includes the low-energy and small-
momentum αν = c0, s1 pseudofermion particle-hole pro-
cesses (C). The determinant of Eq. (71) can be rewritten

as,

( 1
N∗

αν

)2[N0
αν+∆NF

αν ] N∗
αν∏

j=1

sin2

(
Nph

αν(qj) [Qαν(qj)−π] + π

2

)

×
N∗

αν∏

j=1

N∗
αν∏

i=1

θ(i−j) sin2

(
N−0

αν (q′j)N−0
αν (q′i)[q′j−q′i−π]+π

2

)

×
N∗

αν∏

j=1

N∗
αν∏

i=1

θ(i − j) sin2

(
Nph

αν(qj)Nph
αν(qi)[q̄j − q̄i − π]+π

2

)

×
N∗

αν∏

j=1

N∗
αν∏

i=1

1

sin2
(

Nph
αν(qi)N

−0
αν (q′

j)[q̄i−q′
j−π]+π

2

) ; αν = c0, s1,

(72)

where N−0
αν (qj) = N−0

αν (q̄j) is a densely packed bare-
momentum distribution function whose Fermi points are
given by q0

Fαν,±1 = ±q0
Fαν ± [2π/L]∆N0,F

αν,±1 and the
corresponding canonical-momentum distribution function
N−0

αν (q̄j) is that of equation (56) whose Fermi points read
q̄Fαν,±1 = ±q0

Fαν ± [2π/L][∆NF
αν,±1 ± QΦ

αν(±q0
Fαν)/2π].

The expressions (70)–(72) are used in reference [3] in the
derivation of finite-energy spectral-weight distributions for
the model metallic phase.

6 Discussion and concluding remarks

The main result of this paper is the general spectral
function expression defined by equations (36) and (68).
The expression given in the latter equation involves the
p − h, c0 and p − h, s1 pseudofermion spectral functions
provided in equation (62), whose probability amplitude
|〈0|FJ−GS, αν Fp−h, αν F †

0−GS, αν |0〉|2 can be expressed in
terms of the determinants of equations (70)–(72). An im-
portant aspect of the pseudofermion dynamical theory
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introduced in this paper and further developed in refer-
ence [3] for the metallic phase, is the different origin of the
dynamics associated with the matrix-element overlaps of
the αν = c0, s1 pseudofermion occupancy configurations
in the vicinity and away of the Fermi points.

The studies of this paper considered the 1D Hub-
bard model, which describes successfully some of the
exotic properties observed in low-dimensional materials
[1,2,17,23]. Our results also apply to related integrable
interacting problems [24] and therefore have wide appli-
cability. In reference [2] the finite-energy spectral function
expressions derived by use of the pseudofermion dynami-
cal theory introduced here are applied to the study of the
spectral-weight features observed in the quasi-1D organic
compound TTF-TCNQ. Interestingly, one finds quantita-
tive agreement with the observed spectral features for the
whole experimental energy band width. The microscopic
mechanisms found in reference [1] by use of our theory
are also consistent with the phase diagram observed in
the (TMTTF)2X and (TMTSF)2X series of organic com-
pounds and explain the absence of superconducting phases
in TTF-TCNQ. Our theory is also of interest for the un-
derstanding of the spectral properties of the new quantum
systems described by ultra-cold fermionic atoms on an op-
tical lattice [7].
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Schwingenschlögl, Europhys. Lett. 67, 233 (2004); J.M.P.
Carmelo, K. Penc, P.D. Sacramento, M. Sing, R. Claessen,
M. Sing, J. Phys.: Cond. Mat. 18, 5191 (2006)

3. J.M.P. Carmelo, K. Penc, D. Bozi, Nucl. Phys. B 725, 421
(2005); and Nucl. Phys. B 737, 351 (2006), Erratum

4. J.M.P. Carmelo, L.M. Martelo, K. Penc, Nucl. Phys. B
737, 237 (2006); J.M.P. Carmelo, K. Penc, Phys. Rev. B
73, 113112 (2006)

5. Elliott H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968);
P.B. Ramos, M. J. Martins, J. Phys. A 30, L195 (1997)

6. M. Takahashi, Prog. Theor. Phys. 47, 69 (1972); J.M.P.
Carmelo, N.M.R. Peres, Phys. Rev. B 56, 3717 (1997)

7. D. Jaksch, P. Zoller, Ann. of Phys. 315, 52 (2005)
8. For large U/t values the unitary transformation introduced

in A. Brooks Harris, Robert V. Lange, Phys. Rev. 157, 295
(1967) is closely related to the electron–rotated-electron
unitary transformation introduced in reference [9]

9. J.M.P. Carmelo, J.M. Román, K. Penc, Nucl. Phys. B 683,
387 (2004)

10. J.M.P. Carmelo, J. Phys.: Cond. Mat. 17, 5517 (2005);
J.M.P. Carmelo, D. Bozi, P. D. Sacramento, e-print
arXiv:cond-mat/0603665

11. J.M.P. Carmelo, K.E. Hibberd, N. Andrei, e-print
arXiv:cond-mat/0603446

12. N. Andrei, Series on Modern Condensed Matter Physics
(World Scientific), Lecture Notes of ICTP Summer Course,
Editors: S. Lundquist, G. Morandi, Yu Lu, Vol. 6, p. 458,
[arXiv:cond-mat/9408101]; F.H.L. Essler, V.E. Korepin,
Nucl. Phys. B 426, (1994) 505

13. B.D. Simons, P.A. Lee, B.L. Altshuler, Phys. Rev. Lett.
70, 4122 (1993)

14. H. Schulz, Phys. Rev. Lett. 64, 2831 (1990); J.M.P.
Carmelo, A.H. Castro Neto, D.K. Campbell, Phys. Rev.
Lett. 73, 926 (1994); and Phys. Rev. Lett. 74, 3089
(1995), Erratum; J.M.P. Carmelo, A.H. Castro Neto, D.K.
Campbell, Phys. Rev. B 50, 3667 (1994); J.M.P. Carmelo,
A.H. Castro Neto, D.K. Campbell, Phys. Rev. B 50, 3683
(1994)
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